PhotosBiographyFacebookTwitter

From Wikipedia, the free encyclopedia

Arthur Constantin Krebs
Arthur Constantin Krebs then managing director of the Panhard & Levassor Co. in 1910
Born
Arthur Constantin Krebs

(1850-11-16)16 November 1850
Died21 March 1935(1935-03-21) (aged 84)
NationalityFrench
Occupation(s)Officer and industrialist
Known forThe first fully controlled free-flights with La France airship, the first fully functional submarine with the Gymnote experimental submarine, the first automatic carburetor, the Tire flexible coupling.
ChildrenAntoine, Hervé, Louis, Anne-Marie, Arthur, Jean, Alain, Marguerite
Relatives Commander Léonce Krebs (elder brother), Charles de Fréminville (brother in law)
AwardsThe Ponti Prize from the French Academy of Sciences (together with C. Renard).
Websiterbmn.free.fr
Signature
Artist's depiction of La France, 1884
The Gymnote submarine in 1888. Arthur Krebs holds the airing mast. The periscope is visible

Arthur Constantin Krebs (16 November 1850 in Vesoul ( Haute-Saône), France – 22 March 1935 in Quimperlé ( Finistère), France) was a French officer and industrialist, pioneer in aeronautics, electric motors, underwater navigation, fire services, motorboats and automotive engineering.

Origin and youth

"My dear cousin, you ask me, in your kind letter of May 25 [1924], to explain how, as a simple infantry officer, I was led to fulfil the roles and to carry out work bearing little relation to the career I had entered.

This obliges me to recall my memories and remind myself that from the age I started to enjoy mechanical toys, my biggest hobby was fixing and restoring whatever came into my hands.

1861 - Later my reading always focused on books describing mechanics, so that at 11 years old, Ganot's Physics having fallen to my hands, I studied it with the greatest interest, initiating myself into all the mysteries of the steam engine and its applications." [1]

"As a child, young Krebs had made a steam engine that ran a whole mechanical sawmill installed in an old sewing machine." [2]

"This particular aptitude was not without harming my classical studies to some extent, because my mind, more preoccupied with what it had learned on its own, sought to realise them practically.

This naturally led me to draw with precision what, subsequently, rendered me the greatest service. A well executed sketch better expresses the author's thoughts to others than any description or explanation that can be given when it comes to any construction or machine." [1]

"In 1867 I saw for the first time the automobile vehicle of Lotz. [...] The vehicle of Lotz consisted essentially of a steam generator carried on a forecarriage with fifth wheel with a coupling (king bolt) pin and with a trailer consisting of an axle and two wheels, one of which wheels could be connected or disconnected from the axle in order to permit endless screw gearing with a sector connected by chains to the ends of the front axle. I saw this vehicle running at Lons le Saulnier , in view of a trial made with this machine under the direction of Mr. Lotz when he made a trip for advertising purposes in 1867. " [4]

1868 - "This habit of translating my thought into a drawing had developed in me the faculty of seeing well in three dimensions, and I remember that in Math-special, my teacher always sent me to the blackboard to draw descriptive sketches in which he often got confused." [1]

"In 1870, I took the Polytechnique exams and those at St-Cyr. But the war that arose before the oral exams for admission to l' X took place in Besançon, where I was finishing my studies, I could not undergo them and followed the fate of those eligible for St-Cyr." [1]

Military engineer

1873 - "After the war and the time spent in St-Cyr, I came to garrison in Brest. As an officer, the arsenal was open to me. I took advantage of it to deepen my knowledge of mechanics and continue my technical studies." [1]

Brest maps

1873 - "During my stay in Brest, I made plans of this city and its surroundings, and I had the authorization to manufacture, with the help of workers of the regiment, a press with which I was able to print a few thousand copies of the map I had drawn up, which was used for many years." [7]

Hull design

1875 - "My future father-in-law [ Antoine de Fréminville, my father's childhood friend, had given me books on Marine Steam Machines and the construction of ships [8] he taught at the École du Génie Maritime in Brest.

I profited from this and later, in garrison in Nantes, in 1875, I drew up the plans for a ship which was built by an industrialist whom I had met." [1]

"A difficulty having arisen one day in the construction of a new model, it was Lieutenant Krebs who undertook to solve it. He alone made the plans for the ship, and his proposals were implemented point by point." [2]

The Chalais-Meudon Aerostatic Research Park with Charles RENARD

History of aerostation
1884-10-01 - airships

1876 - "At the end of 1876 my battalion came to Paris. Put in touch with Captain Renard by a mutual friend,, I contacted him and he informed me of the work he had undertaken at the Air Communications Commission and asked for my collaboration.

Colonel Laussedat, who chaired this commission, had me appointed by the minister, and I was seconded to the Engineering Department, on which the Chalais-Meudon Workshops depended. My dearest wishes were thus fulfilled, but to inspire confidence and obtain credit, you had to succeed and only promise what you were sure you could achieve.

Renard had already built a captive balloon, but the mechanical part allowing ascents to be carried out was only embryonic. I undertook to remedy this, and thanks to the Exhibition of 1878, I quickly assembled all the elements necessary to establish a steam winch which functioned to our great satisfaction from the month of August." [1]

Captive balloon train

History of the tethered balloon

"The experiments and demonstrations followed one another brilliantly in complete safety and allowed us to interest members of the Budget Committee, because it was necessary to obtain the funds to continue the studies and carry out the projects covered by the Committee of Air Communications.

Gambetta, then Clémenceau, came in turn to attend the experiments and promised their support.

Two goals were to be pursued:

1 / Design and construction of a captive balloon equipment transportable in the field;

2 / Design and construction of an airship.

The first seemed easy to me. It basically involved the construction of a steam winch on wheels for balloon manoeuvres, and that of two other cars to transportat the tackle and accessories of the steam engine (water and coal) and an apparatus, also on wheels, for the production of hydrogen gas. Renard took care of this last requirement and I took the first." [1]

Hydrogen generator

Hydrogen production history

1879-1880 - C. RENARD designs stationary and mobile hydrogen generators and A. C. KREBS designs the steam engines that power them.

"To carry out this work quickly and successfully, we had to establish a laboratory and set up a mechanical workshop, both provided with the necessary tools and tools workshop. We had engineering Sappers from the Regiment of Versailles as workers". [1]

1906 - "All the mechanical work has been the subject of special study by me, and to accomplish this I constructed and organized a shop located in the park of Chalais-Meudon, which shop is still in existence". [4]

1879-1880 - "The following year (June 1879), a first station was created and made it possible to experiment with balloon transport and ascents on the plateau which dominates Meudon to the south. Following these tests, the minister decided that this park would attend the Grandes Manoeuvres which were to take place around Silliers-le-Guillaume (22 and 23 September 1880). During these manoeuvres, the information on the progress of operations by the staff officer deputised to the ballon station [Léonce Krebs] was so convincing that it was decided to build 4 similar stations whose construction was entrusted to us."

"The funds allocated allowed us to expand the workshops, improve the tools and establish a manufacturing operation which served as a model for the 25 captive balloon stations in the various Army Corps and strongholds in 1914." [1]

Free ascents

Marriage

1881 - A. C. KREBS married Marie de Fréminville, sister of Charles de Fréminville.

" La France" airship with Charles RENARD and Henri DUPUY-de-LÔME

Collaborating with Charles Renard, he piloted the first fully controlled free-flight made in the French Army airship La France, which was designed in 1884. The flight [10] covered 8 km (5.0 mi) in 23 minutes. It was [11] with a landing at the starting point. On five of its seven flights La France returned to its starting point.

"In the meantime, studies and experiments continued for the construction of the airship. Its realization was for us the height of our aspirations and was the object of our deepest meditations. The shape of the balloon, the arrangement of the nacelle and the determination of the kind of energy to be employed as the motive force for its propulsion, were the subject of a long examination and in-depth discussions."

Search for a light engine: steam, hydrogen, electricity

1878 - "Before the 1878 Exhibition while at the aeronautic station I bought and accepted, at the shops of Panhard & Levassor, a two horse power [city gas] Otto four cycle engine for installation at the balloon sewing shop." [4]

1881 - "At that time, the electrical industry was developing. The International Electricity Congress of 1881 had just determined the units of measurement necessary for the study and applications of this new branch of energy. The gasoline engines, so widespread now, were not yet known, we decided the use of electricity for the motive force of the balloon."

"Renard devoted himself to the search for a very lightweight electrical source capable of developing the energy necessary for operating about 2 hours of a 10 HP motor. I took care of setting up the engine and all the mechanical parts that operate the propeller. This is how I was led to study electricity when this science was developing industrially." [1]

1882 - "In 1882, for the purpose of driving a dirigible balloon, which was then being investigated by the Ministry of War, I undertook the development of an internal combustion engine which was to use as a fuel the hydrogen which inflated the balloon. It was on this occasion that for the first time I thoroughly tackled a complete study of internal combustion engines." [4]

1884 - "It is thus in about 1884 I followed with great interest the construction of the small petrol motors of Mr Daimler. "

Date Patent Title
1878 FR124078A De la Haye, Renard and Krebs: Direct circulation steam generator called RENHAYE generator

Aerodynamic research: the Balloon shape

Categories: Fluid dynamics, Aircraft wake turbulence

1883 - "M. Krebs had wooden models of various shapes made, which were successively tested in the pond of Chalais; these tests proved that in order to ensure consistent operation, it is necessary to give the mobile an asymmetrical shape. Thus the ovoid shape, proposed by Captain Krebs, was definitively adopted for the Chalais airship." [12]

1884 - "The evaluation of the energy required to maintain to the balloon a given speed was made in two ways:

"1° Starting from the data put forward by M. Dupuy de Lôme and appreciably verified by the experience of February 1872;

"2° By applying the formula accepted in the navy for passing from a known ship to another of very little different shapes and by admitting that, in the case of the balloon, the work is in the ratio of the densities of the two fluids." [13] [14]

Gondola beam

A. C. KREBS piloted the first fully controlled free-flights

1884 - "The first ascent of the balloon " La France", which took place on August 9, 1884, and in which an aerostat described for the first time by its own means a closed curve while returning to its starting point, was the crowning of our work. We could not then claim to obtain an operating time exceeding 2 hours because of the weight of the engines. It was therefore only an interesting experience but without a future.

In fact, 15 years had to elapse before, thanks to the improvements brought by the automobile to gasoline engines, we could provide a balloon similar to " La France" with an engine light enough for Lebaudy balloons to remain in the air for 10 hours." [1]

" Gymnote" submarine with Gustave ZEDE

1884 - "The airship experience was over without leaving any hope of being able to do better in the short term. It was then that General Zédé, brother of Mr. Zédé, director of Naval Constructions, whom I had met through my father-in-law, suggested that I leave the Military Engineering Department, where I had no future, and to appoint myself to the Firefighters Regiment in Paris, whose capabilities were to be modified and improved to bring them up to the level of what existed abroad."

1885 - "Mr. Gustave Zédé, former Director of Naval Constructions and Administrator at the Société des Forges et Chantiers, had undertaken the study of a submarine on behalf of the Navy in 1885. This ship was to be propelled by an electric motor powered by accumulators, all of which had to be designed and built. He told me about his project and asked me to collaborate with him."

"The hull was built by the Arsenal at Toulon, and all the mechanical and electrical part had to be carried out in the shops of the Forges et Chantiers in Le Havre." [1]

The A. C. KREBS electric motor for the Gymnote submarine

"I accepted the offer with pleasure, although the conditions of construction of an electric machine of 50 hp at 200 rpm [required by Zédé] presented serious difficulties. In fact, completely new arrangements had to be made in order to accomodate the machine, accumulators and operating devices in a very limited space. At the request of the Minister of the Navy, I was authorized by the Minister of War to lend my assistance to the Navy while retaining my functions in the Regiment of Firefighters." [1]

Date Patent Title
1886 FR173487A Two-brush collector for multi-pole electric machines

Electric motor launch

1887 - "A first experiment, consisting in propelling a Navy boat by means of a dynamo and accumulators, had first to be prepared to convince the Minister of the Navy of the possibility of the operation. This first experiment (1887) took place in Le Havre and was fully successful. Work for the submarine could then be undertaken." [1]

The first fully functional submarine

"Years 1887 and 1888 were used for their execution. The assembly of the machines, tested beforehand in Le Havre where they gave complete satisfaction, took place in Toulon under the direction of Mr. Romazzotti, marine engineer in charge of the construction of the submarine "Le Gymnote"."

"In December 1888, I was sent to Toulon to attend the tests. The year 1889 was used to equip the submarine with special features to improve vision, and with an electric gyroscope, of which I am supplying the plans, to replace the compass which is indifferent when it is inside an iron shell."

"In December 1889 I witnessed new trials, quite conclusive, following which a larger ship was started, studied and built directly by the Naval Constructions." [1]

Transportable electric motor

1885-1890 - "It was during this period that I studied a portable electric motor to power the drills used on ships under construction to drill holes in sheets which must then be riveted together. Likewise, electric motors operating the fans circulating the air in all parts of the ships etc." [1]

Date Patent Title
1886 FR175023A Portable lightweight dynamo-electric motors

Paris Universal Exposition of 1889

1889 - For the Universal Exposition, A. C. KREBS:

"Ville de Paris" fire service reorganization

1884-1897 - "It would take too long to dwell on the work carried out during the 12 years (1885-1897) that I spent in this body. After several study trips to the United States of America 1885 and 1895 and Europe 1884, 1885 and 1891, I was led to make proposals: but this time the task was not the same."

"The proposals were discussed in committees, and before they came to execution, they had to be made to triumph. I managed to get them accepted and the result was to completely transform the organization of the Fire Department as well as its equipment." [1] [23]

DURENNE & KREBS steam fire pump

Date Patent Title
1888 FR189962A Multitubular boiler with expandable curvilinear tubes with automatic and rapid circulation
1889 Addition certificate
Addition certificate
1890 FR208718 M. DURENNE, pour une pompe à vapeur, système Durenne & Krebs ( Drawings).

Study trips to Europe and America

1885-11-26 - New York Times: "Among the passengers of the French steamship Normandie, which sailed yesterday for Havre, were Rear-Admiral Baldwin, of the United States Navy ; A. Bartholdi, the sculptor ; Baron Hulot, Capt. Krebs, the Abbé Gaudin, Capt. Garcin, Martin Clerc, Ch. de Fréminville."

1895-09-10 - New York Times: "Three Frenchmen Who Will Study Methods Used in This Country: Three Frenchmen, Col. Varigault, Commandant Krebs, and Capt. Cordier, officers of the Paris Fire Department, arrived in this city on La Touraine Saturday last to begin a tour of the principal cities of the United States for the purpose of investigating the methods adopted in various Fire Departments."

1895-11-06- Quebec Morning Chronicle: "Chief Varigault, Commandant Krebs and Captain Cordier, of the Paris Fire Department, returned to New York yesterday after a two months’ tour of the United States and Canada for the purpose of inspecting the fire departments in the larger cities. Chief Varigault was seen this morning. He said:— “We have visited New York, Boston, Montreal, Cleveland, Chicago, St. Louis, New Orleans, Cincinnati, Pittsburg and Washington. We have been received everywhere with the greatest kindness and our trip has been a complete success. The New York Department is far ahead of any other we have seen in this country, both in equipment and discipline. Next I should name Boston, although Montreal is not far behind. Chicago and San Francisco are also good. But I can’t see how the Chicago Fire Department could fight a fire in one of her high buildings."

Fire alarm telephone

Date Patent Title
1888 FR192070A Closed magnetic field telephone system with equal concentric cylindrical section plates

hydraulic air compressor

Date Patent Title
1889 FR196134A Apparatus producing compressed air to supply air to people located in an unbreathable environment and for all industrial uses

Single valve pump theory

Other Fire Apparatus

Photos du matériel d'incendie à l'EXPOSITION de 1900 : https://gallica.bnf.fr/ark:/12148/bpt6k6584731t/f367.image.r=krebs

Fire intervention areas reorganization

1889 - Improvement committee for Paris firefighters: "The areas of the perimeters each defended by a fire post are proportional to the square of the speeds with which these fire posts staff can be transported, and as an immediate and very important consequence, the number of fire post to be placed is inversely proportional to the square of these same displacement speeds. Thus, a transport system that could go twice as fast as another will require four times fewer fire posts to arrive at the same time." [29]

1896-05-20 - Accident at the Opera - A 625 kg counterweight from the deflector of the Paris Opera chandelier broke off in the middle of the show, fell 12m while crossing several levels and killed one person: "The version of Major Krebs, of the fire brigade, however, seems most likely: under the action of a contact current, the wires supporting the counterweight of the ventilation device heated up, became elastic and, each thread, having no more than the consistency of cooked macaroni, broke under the weight which it was charged to support. The wires of the cable have not been heated to fusion, but they are stretched and the sections are unevenly placed." [30] "By a bizarre coincidence, M. Garnier, the architect of the Opera, returned to Paris this morning. He attended the committee's deliberations." [31]

KREBS system car and Émile LEVASSOR

1894 - the Paris-Rouen race: "I was present on the 18th of July, 1894, in the morning, at the starting of the automobile vehicles entered in the race of Le Petit Journal. The starting took place at La Porte Maillot. At least 20 vehicles reported to start." [4]

1896 - "Around 1894 appeared the first motor cars powered by gasoline engines. Automobile locomotion having already struck my imagination from the point of view of its application to the Fire Department, I got a small engine from the Panhard & Levassor company to study it thorowghly and built in the fire department workshop a small experimental car whose speed changes were obtained by magnetic clutches [patented in 1896]. I had conseived of this arrangement to avoid the brutal shocks that the gears undergo when changing gear, a solution that seemed barbaric to me." [1]

The 1896 Krebs car system introduced in car design (FR256344, GB189619774A, BE124538):

  • The general three point suspension system (engine and chassis):

"Since we know that 3 points suffice to determine a plane." [35]

"To these sides [of the frame of the car] I fix or suspend at three points provided with pivoted joints, the motor mechanism which is thereby placed out of the influence of the deformations to which the frame of the car is liable to be subjected during the motion."

  • The electromagnetic constant mesh gear box:

"I had imagined this arrangement to avoid the brutal shocks that the gears undergo when changing gear, a solution that seemed barbaric to me."

  • The speed shifting at the steering device:

"For the purpose of operating the electro-magnetic clutch, I employ a commutator arranged preferably under the handle bar and adapted to be operated in such a manner as to establish, according to five different positions, the electrical connections that correspond respectively to: rest ; forward movement at low speed ; forward movement at medium speed ; forward movement at high speed ; and movement in the rearward direction."

  • The damped steering and the rack and pinion steering gear:

"Upon the turntable of the fore-carriage is fixed a toothed sector in which engages a pinion mounted on the upper turntable and whose axle carries a toothed wheel situated in a box connected by two tubes to the box of the car. A second toothed wheel mounted on the steering spindle is connected to the first one by means of a chain passing through thses two tubes. Elastic rods, consisting for example of coiled springs, are substituted for the links of the chain in the straightportions of the said tuges. By this means the chain is always taut and the springs neutralize the vibrations transmitted to the chain by the jolting of the fore-carriage and so prevent the said vibrations from being transmitted to the steering spindle."

"To ensure the stability of direction by the means of a special arrangement of the fore-carriage, that is to say, to re-establish automatically the parallélism of the two axles of the vehicle when there is no tendancy to keep them in any other direction, or after a temporary effort has caused them to diverge from said parallélism ; [...] The axle of the fore-carriage is situated behind the projection of the axis of the pivot pin in order to ensure the stability of direction above referred to [of a quantity which can vary from 1/7 to 1/8 of the distance which separates the points of contact of the two front wheels with the ground (FR256344)]." (GB189619774A)

  • The French artillery wheel with metallic wheel hub system:


1896 - Émile LEVASSOR to A. C KREBS: "You would kindly give us permission to use your wheel hub system for which, since you say it is very good, it might be worth patenting." (see above)

1896-09-03 - Emile LEVASSOR buys the license of the automobile car patent (FR256344, GB189619774A, BE124538) from A. C. KREBS with an electromagnetic gearbox, three-point suspension, caster angle and other inventions. [36]

1896-12-22 - Emile Levassor to Gottlieb Daimler: "For the car with electric gear changes [...] by seeing this car alone you can be sure that you will see much more than what you have seen in England in your various trips." [37]

Three point suspension system

1888 - Steam fire pump from the city of Paris (1888 model) by MM. Durenne & Krebs: "The mechanism is connected to the chassis by three points with the interposition of an elastic material allowing the deformation of the chassis without distorting the parts of the assembly. The boiler is also fixed at three points only." [38]

1896 - The three point suspension system generalized (engine and chassis) on the Krebs system car (see above).

1898 - The VCP (see above).

1901 - The gearbox suspended by three points (see below).

Vehicle's Steering-Systems

In 1898 Krebs replaced the tiller with an inclined steering wheel for the Panhard et Levassor car he designed for the Paris-Amsterdam race which ran from the 7 to 13 July 1898. Fernand Charron won that race on a four cylinders Panhard et Levassor.

la direction irréversible P&L

https://archive.org/details/automobileaprac00haslgoog/page/440/mode/2up?q=panhard

Electric van

1899 - French Electric Fire Department Wagon: "Paris firemen have also lately been out making successful experiments with the automotor constructed especially for the fire service, after the plans of Colonel Krebs".

[39]

Automotive engineering at Panhard & Levassor

Krebs succeeded Levassor as Panhard et Levassor's general manager from 1897 to 1916. He transformed the Panhard et Levassor company into one of the largest and most profitable automobile manufacturers before World War I.

"At the beginning of 1897 [in fact the 1896/09/03] [36] I showed my completed working car to Mr. Levassor. He was greatly struck by it and asked me to allow him to put several into production in his workshops and to kindly supervise their manufacture. [36] Two months later, Mr. Levassor died suddenly. His partner, Mr. Panhard, transformed his association into a limited company and asked me to take charge of it." [1]

Emile Levassor acquired the license of this electromagnetic gearbox in 1896 and Panhard & Levassor built it at least until 1903.

"The automotive industry was in its infancy, its future was not in doubt and the Panhard & Levassor company held the lead. Encouraged by the success of my previous work and my personal tastes, I did not hesitate to accept and abandon the military career to enter the industry." [1]

"I have known Mr. Daimler in 1897, when I went to visit him at Cannstadt, Germany, in October. In the house he lived in he showed me the laboratory and shop where he had studied and first built his little engine, then the first vehicle on which he made his first trials." [4]

Racing cars

"The eraly days were not without difficulty. It was first necessary to enlist the support of a very tight technical team possessive of their experience. A few improvements which I immediately introduced to certain mechanical components leading to the success of the company's 4 cars in the "Paris-Amsterdam" race (arriving first at every stage), the following year earned me the confidence of the staff." [1]

1898 - Paris-Amsterdam-Paris race - First improvements:

  • The wheel steering
  • The irreversible steering with the worm and sector steering gear
  • The tires

1904 - The 1st Vanderbilt Cup in New York won by George Heath on Panhard & Levassor: Panhard race cars in New-York.

Caricatrure Heath : https://gallica.bnf.fr/ark:/12148/bpt6k12568012/f654.image.r=panhard

"During my 18 years in charge, I can only praise the devoted support of all my colleagues, I have always found willing to assist me to carry out changes or new provisions introduced in the mechanical organs of cars.

It is unnecessary to recall them here in detail. Those that I am happy to point out because they have given me great personal satisfaction are:

  • Engine balancing;
  • the automatic carburetor making it possible to vary the speed of the engine and to give it a flexibility that the all-or-nothing adjustment did not allow;
  • Dynamometer brake for testing high-speed engines, measuring the work on the shaft according to the Prony formula, recovering approximately 90% of the energy produced in electrical form, etc.". [1]

Engine balancing

Date Patent Title
1901 FR306968A Two-cylinder engine balancing system
GB190114881A A System of Equilibrium for Motors Having Two Cylinders
AT13992B Device for balancing masses in engines with two adjacent cylinders
US778542A System of Equilibrium For Motors

Krebs carburetor

The Krebs carburetor can be said the first automatic carburetor ( 1902 patent) and the first diaphragm carburetor ( 1908 patent).


1906 - "At the present time we are not sufficiently in possession of the factors that would enable us to fully understand the reasons why it is possible to transform into work only a very small part of the heat developed in the combustion from which we are trying to realize work." [42]

1903 - The automobile: "The object gained is a constant degree of carburation at all speeds, each active piston stroke developing the same amount of power, and the total power of the motor consequently is directly proportional to its speed. Also, carburation can be kept at its lowest possible limits, and it is perfectly automatic and independent of variations in the atmospheric temperature. The carburation is always good. The usual dash-board adjustment for additional air and a special hot-air feed are not needed: the warming of the mixing chamber with the motor jacket water maintains a constant temperature. The motor can be run at a very low speed without lowering its efficiency. For instance, as the Automotor Journal states the case, if the change-speed lever is put on the third speed, which ordinarily might give a speed of 50 km. (31 miles) per hour, and it is desired to run at only onetifth of that speed, the speed of the motor is reduced to one-fifth, say from 1,000 to 200 revolutions per minute; of course, the total output is diminished, but the power of each stroke remains the same. The new Krebs carburetter, then, goes far to supplying one of the chief needs of the petrol motor — flexibility." [44]

1913/05/26 - Panhard & Levassor Management Committee: " The United States is asking to purchase our 1903 carburetor patent, which is still valid for 5 years. We send 2 proposals: 1° Sale of the patent for $ 10,000, 2nd License for cash $ 2000, plus $ 1 per carburetor."

[45]

1919 - "In the early days of the 20th century, Krebs, a French engineer, invented what may be termed the first automatic carbureter in which the mixture was regulated automatically by the speed of the engine ; flexibility being thus obtained to an extent hitherto undreamed of. This invention paved the way for, and inspired, a vast number of others of greater or less merit [...] The Krebs type can today be considered the simplest form of carbureter which operates satisfactorily and there are several different models now manufactured based on the principle of the auxiliary air valve only. In these the problem is worked out in different ways. [...] While they all differ in the details of working out the design they are, nevertheless, based on the basic principle of the auxiliary air valve as originally worked out by Krebs."

[46]

See below: A. C. KREBS carburetors patents.

Date Patent Title
1902 FR325241A The Krebs carburetor ( See above): A self-adjusting carburetor
GB190222655A Improvements in Oil Engines
DE146328C A carburator for internal combustion engines
US734421A Fuel-governor for oil-engines
CA778542A + CA83889A Oil Machine

Dynamometric brake

1905-11-13 - To the French Académie des sciences: "On a dynamometric brake intended for the measurement of the power of motors, which allows the use, in electrical form, of most of the work developed".

"Voiture Clément-Panhard (VCP)" and Adolphe CLEMENT

1900 - La voiturette Krebs (Panhard & Levassor)

"Le moteur Krebs".

Date Patent Title
1897 FR273374 The Krebs friction clutch: Improvements to clutches
GB189730790A Improvements in Friction Couplings
1897 FR273375 The mechanical constant-mesh Krebs gearbox: Improvements to transmissions with speed change
GB189730791A Improvements in Speed Changing Transmission Gear
ES22155A1 A new transmission system, particularly applicable to automatic cars
1898 FR284596 The Voiture Clément-Panhard patent with engine regulation on admission: A petroleum-powered light car system
GB189902960A Improvements in Light Motor Road Vehicles

Automobile handling

"The question of steering is one that I have taken up towards the end of 1897, as soon as I had acquired a sufficient knowledge of the operation and of the organization of the Panhard & Levassor business. This new P&L steering device was not anything else but an adaptation of means already known and used since a very long time for the same object." [4]

1900 - Le quadrilatère extérieur de Panhard & Levassor: https://gallica.bnf.fr/ark:/12148/bpt6k6230266z/f382 .

1900 - La direction irréversible P&L: https://gallica.bnf.fr/ark:/12148/bpt6k6230266z/f389 .

1898 - Course Paris-Amsterdam-Paris: https://gallica.bnf.fr/ark:/12148/bpt6k6230266z/f662.item.r=panhard

Paris Universal Exposition of 1900

Photos du matériel d'incendie à l'EXPOSITION de 1900 : https://gallica.bnf.fr/ark:/12148/bpt6k6584731t/f367.image.r=krebs


Metallurgical research with Ch. de FREMINVILLE

"In 1898, I took with me, to assist me, my brother-in-law Mr. Charles de Fréminville, engineer of Arts and Manufactures, who took care more specifically of the administrative part of the workshops, the organization of work, the selection and treatment of metals used in manufacturing, etc." [1]

https://archive.org/details/mechanicalengine42amer/page/72/mode/2up?q=%22commandant+krebs%22

1904 - The brittleness of steel (H. Le Chatelier): "Mr. De Fréminville discovered this peculiarity that, after being subjected to a certain heat treatment, certain special steels required to be broken transversally by impact, an amount of energy much greater than that required in the ordinary tensile tests." [54]

1913-04-04 - Ch. de Fréminville to his wife: "I realized the project I had made to mold the hole made by a bullet in the bay window of General Healey's building [in New York]. General Healey pointed out to me that it had the same on almost all the bay windows in his building. There's a lot to choose from. Yesterday I went to stock up on plaster from an Italian. What a neighborhood! It's just a stone's throw from the upscale neighborhood and it's not a badly-reputed neighborhood. My molding was admirably successful. I thought there was going to be a considerable crowd behind the bay window while I operated in shirt sleeves - like a good American. And all these people didn't know what they were looking at and would never have looked at a fracture. Luckily two steam [fire] pumps passed in quick succession. All these admirers abandoned me." [53]

1915 - [55]

Chevalier légion d'honneur

  • 1899: Laboratoire de mécanique et laboratoire de chimie
  • 1900: Essais de résistance des aciers durs aux chocs
  • 1901-06-03 - L'acier au nickel
  • 1902: cylindres en acier forgé
  • L'acier au vanadium
  • L'acier au cobalt (stellite)
Date Review Article
1903 Association internationale des Méthodes d'essais des matériaux de construction L'essai au choc ou choix des métaux
1906 Revue de métallurgie Essai d'une scie sans dents pour le sectionnement d'aciers durs ordinaires et d'aciers à outils
1906 Revue de métallurgie Influence des vibrations dans les phénomènes de fragilité
1907 Revue de métallurgie Caractères des vibrations accompagnant le choc déduits de l'examen des cassures
1908 Revue de métallurgie Remarques sur les rebondissements d’une bille et les renseignements qu’ils peuvent donner sur la dureté et l’élasticité des corps
1914 Revue de métallurgie Recherches sur la fragilité — L’Éclatement
1918 Scientific American Supplement How Things Break—I - A Study of the Mechanism of Fractures in Materials By Charles Fréminville
How Things Break—II - A Study of the Mechanism of Fractures in Materials By Charles Fréminville

Motorboats & Racing boats with Alphonse TELLIER

1895 - A. C. KREBS has been the main promoter of motorboating in Europe as soon as 1895. [56]

1903-12 - Automobile Magazine: "Where speed wins out: As an excellent example of the new type of water racer take the Lutece". [57]

1904-02-27_10_The-Automobile='Auto Boats at the Sportsmen’s Show.':

The Panhard boat furnishes the same tune in its engines as in automobiles. When running, the four-cylinder motor throbs with that rythmic sound so soothing to the motorist.

1902 - The variable pitch propeller system A. C. KREBS:

Date Patent Title
1903 FR306968A The Krebs variable pitch propeller: Variable -to -step propeller
GB190316555A Improvements in and relating to Screw Propellers
US766953A Screw-Propeller

Hybrid motorcar with Ferdinand PORSCHE

1900/07/07 - A. C. KREBS file the patent FR301991: "Electromagnetic regulator for admission-valves of hydrocarbon-motors" ( US691638, GB190016291).

1900/10 - At the Paris Exposition Universelle A. C. KREBS remarks the Lohner-Porsche "Semper vivus" hybrid car and acquire for Panhard & Levassor the wheel hub electric motor patent (GB190018099) license for France, Great-Britain and Italy. [64]

1903/01/24 Scientific-american - The Panhard et Levassor Lohner-Porsche system: "... the most novel of all, being a Lohner-Porsche, 28 horse power, gasoline-electric tonneau car, with electric motors in the hubs of the front wheels, which also steer the machine. A gasoline motor direct-connected with a dynamo furnishes power for generating electricity to run the car, any superfluous current being sent into a storage battery, which supplies extra power as it is needed. The car is said to have 14 different speeds, the maximum of which is 48 miles per hour. This system has been so successful that the Panhard Company has purchased the patents and is making machines". [65]

Automotive Technology

Engine

In 1900, A. C. KREBS designed the Centaure engine with the aim of freeing itself from the royalties owed to Mme Levassor on the Daimler engine.

In 1909, he became interested in the Knight patent ( sleeve valve engine) and was first in France to build that type of engine which Panhard et Levassor would produce during the thirty years leading up to World War II.

Date Patent Title
1897 FR273375 Improvements to transmissions with speed change
GB189730791A Improvements in Speed Changing Transmission Gear
ES22155A1 A new transmission system, particularly applicable to automatic cars
1898 FR284596 The VCP patent (see above): A petroleum-powered light car system
GB189902960A Improvements in Light Motor Road Vehicles
1900 FR301991 Electromagnetic intake valves: Electromagnetic regulator system acting on the intake valves for hydrocarbon engines (see above)
AT9519B Electromagnetic control device for hydrocarbon engines
US691638A ELECTROMAGNETIC REGULATOR FOR ADMISSION-VALVES OF HYDROCARBON-MOTORS
1900 FR302402 The Krebs Centaure engine: New internal combustion engine consuming gas, petroleum gasoline or ordinary petroleum
FR325241A The CENTAURE carburetor: See above
AT15838B Valve control for explosive engines
GB190016627A Improvements in Gas or Oil Motors
1901 AT11006B Suspension of the gearbox by three points: Suspension of the housing enclosing the change and reversing gear of motor vehicles (see above)
1902 GB190200673A Centaure engine lightened & Water-jackets: Improvements in Internal Combustion Engines
1902 FR322489A Stretch cams:Improvement in the construction of internal combustion engines
AT14430B Controllable valve control for explosive engines
GB190224250A Improvement in the Construction of Explosion Motors
US733220A VALVE-GEAR FOR EXPLOSIVE-ENGINES
1902 FR326199A Engine cooling: A device for cooling internal combustion engines
1909 FR409630A Valve cooling: Improvement in internal combustion engines
1909 FR414413A Krebs concentric valves: Device for suction and exhaust valves and their control for internal combustion engines operating on combustible gases or liquids
CH52317A Arrangement and control of the inflow and outflow valves on explosion or internal combustion engines
AT51827B Control for combined intake and exhaust valves of internal combustion engines
GB191014278A Improvements in or relating to Valves and Valve-gear for Internal-combustion Engines
US1019488A VALVE FOR EXPLOSION-ENGINES
1911 FR440438A Krebs valveless engine: Internal combustion engine distribution
1912 FR461176A Helical gear transmission: Internal combustion engine transmission
FR480650A Connection device between connecting rod and piston
1916 FR484035A Valve train

Carburetors

See above: The Krebs carburetor.

1900 - Automobile Magazine: Alcohol in Automobile Practice: "In December, at the instance of the Society for the Industrial Utilization of Alcohol, M. Krebs, of the Panhard et Levassor Company, experimented with a three horse-power Phoenix auto mobile, the only alteration being the widening of the opening to the carbureter. With the Dusart alcohol 4.2 horse-power was developed, and with ordinary 95 per cent. alcohol 3.6 horse- power; with benzine at full speed, 4.4 horse-power. According to Araschaquene it would be sufficient to abolish the tax on alcohol in order to cause it to replace benzine". [70]

1916 – Panhard & Levassor catalog: "We have adopted on all our engines a carburetor based on an entirely new principle of automaticity, which rigorously doses the mixture at all speeds and offers the advantage of no longer having any intake additional air, no moving parts. The rubber membrane of our old models is thereby eliminated. In our 20 HP and 35 HP engines, the carburetor is double and controlled by two accelerator pedals. The ordinary accelerator pedal ensures walking in town and at medium speeds, while the second pedal, actuated with the left foot, brings into play the second carburetor which is added to the first to provide very high speeds, and at this time to provide additional lubrication."

Date Patent Title
1899 FR295792 A constant level carburettor for petrol engines
1900 FR325241A The CENTAURE carburetor: A self-adjusting carburetor
GB190000471A An Improved in Air Carburators for Petroleum Motors
See below: Alcohol in Automobile Practice
GB190016467A A Regulating Charging Valve for Gas or Oil Motors
AT8337B Adjustable input device for explosion power machines from the controller
1902 FR325241A The Krebs automatic carburetor: A self-adjusting carburetor (See above: The Krebs carburetor.)
DE146328C A carburator for internal combustion engines
ES30512A1 A graduation and automatic action carburetor
GB190222655A Improvements in Oil Engines
US734421A Fuel-governor for oil-engines
CA83889A Oil Machine
1903 FR333127A Improvements to the Krebs carburetor: Improvements to carburettors
DE158769C Device for automatic regulation of secondary air in mixing devices for explosive engines
AT15655B Device for the automatic regulation of the secondary air supply in mixing devices for explosive engines
AT15822B Device for the automatic regulation of the secondary air supply in mixing devices for explosive engines
US785558A Oil-engine
1908 FR401546A The Krebs metering pin carburetor: Improvements to carburettors for motors
ES45533A1 Engine Carburetor Improvements
GB190912043A Improvements in Carburettors for Explosion Motors
1912 FR458736A The Krebs carburetor with no moving parts: Improvement brought to carburettors for internal combustion engines
1913 The double barrel Krebs carburetor (see below: 1916–Panhard & Levassor catalog)
1916 FR502997A The Krebs carburetor for airships and aiplanes: Automatic carburetion corrector for internal combustion engine operating at different altitudes.
FR486245A Improvement brought to the constant level of the carburettors


Ignition

https://archive.org/details/automobileaprac00haslgoog/page/216/mode/2up?q=panhard

Date Patent Title
1902 The Krebs electric ignition: Mixed electrical ignition for explosion motors
GB190200452A An Improvement in Electrical Ignition Apparatus for Internal Combustion Engines
AT14673B Switching device for the primary current in electric ignition devices for explosive engines
US708053A APPARATUS FOR DISTRIBUTING THE PRIMARY CURRENT FOR ELECTRIC IGNITION BY COILS AND IGNITERS IN EXPLOSIVE-ENGINES
1904 FR343448A The Krebs magneto ignition: Mixed electrical ignition for explosion motors
FR4936E Addition: Mixed electrical ignition for explosion motors
GB190412741A Improvements in Electric Ignition Apparatus for Internal Combustion Motors

Clutches

Multidisques: https://gallica.bnf.fr/ark:/12148/bpt6k98043305/f57.image.r=panhard Boîte constantt mesh: https://gallica.bnf.fr/ark:/12148/bpt6k98043305/f235.image.r=panhard https://gallica.bnf.fr/ark:/12148/bpt6k98043305/f300.image.r=panhard


Date Patent Title
1897 FR273374 The Krebs friction clutch: Improvements in clutches
GB189730790A Improvements in Friction Couplings
US693551A Cone clutch
AT6940B Friction clutch, especially for motor vehicles
1900 GB190022975A An Improvement in Cone Clutches
1902 GB190200574A Improvements in Cone Clutches
US734893A CONE-CLUTCH
AT734893A cone friction clutch
1904 FR340185A Multidisk clutch: Friction washer clutch
1906 FR362841A The Krebs Panhard type gearbox: Improvements to claw clutches
1907 FR383188A Multidisk coupling: Clutch connecting two shafts, one of which rotates at a variable speed and the other at a constant speed
1911 FR444601A Multidisk clutches: Improvements to disc clutches
1912 FR450180A Improvement brought to the construction of the clutches
GB191226137A Improvements in or relating to Clutches

1897-12-21 - https://gallica.bnf.fr/ark:/12148/bpt6k57007322/f446.image.r=panhard Patent FR273374 GB30790A

File:1897-12-21 - Panhard & Levassor brevet FR273374 'Perfectionnements aux embrayages'.pdf

1904 - Embrayage Krebs

https://gallica.bnf.fr/ark:/12148/bpt6k9782584r/f469.image.r=krebs

Multiple disc clutch

Gearbox and transmission

The Panhard Type of Gearbox is enhanced by A. C. KREBS.

Date Patent Title
1897 FR273375 The mechanical constant-mesh Krebs gearbox: Improvements to transmissions with speed change
GB189730791A Improvements in Speed Changing Transmission Gear
ES22155A1 Un nuevo sistema de transmisión, particularmente aplicable a los coches automáticos
1898

GB189902960

VCP: Improvements in Light Motor Road Vehicles
1899 FR294232 Combined shifting and gear shifting system for motor car [71]
GB189923564A Improvements in Driving Gear for Motor Cars [72]
1900 GB190022975A An Improvement in Cone Clutches


1901 GB190114824A Improvements in connection with the Mechanism for Change of Speed and Direction of Motion of Motor Cars
1901 US700950A Change speed box: MOTOR-VEHICLE
1905 FR351743A Automatic locking system
AT24197B Coupling device
GB190515737A Improvements in Interlocking Mechanism for Change Speed Gears and the like
US822057A SYSTEM OF LOCKING
Harmonic gears "In certain cars, particularly Panhards, the musical note caused by the gear wheels is itself a very fair guide to the changing of speed."
1906 FR362841A The Krebs Panhard type gearbox: Improvements to claw clutches
1910 FR430298A Automobile tipping dumper with front-wheel drive and steering
GB191113942A Improvements in and relating to Tip Wagons and the like
1911 FR438815A Device for shifting and declutching using a single lever
AT62323B Speed change gear
GB191200983A Improvements in and relating to Variable Speed Transmission Mechanism
US1112810A Clutch and Gear Shifter
1911 FR439445A Direct drive device applicable to fluid gear shifting devices
1913 FR473344A Improvement in motion transmissions in motor cars
1914 FR475432A Transmission system for driving and steering vehicle wheels
1915 FR482374A Cardan joint lubrication device by oil circulation
The globoïd worm gear rear axle differential

Brakes

Date Patent Title
1898 FR284596 The Krebs double-acting brake on the differential axle: "A two-pronged clamp fixed to the frame, which clamps a pulley mounted on the differential shaft"
GB189902960A A two armed clamp fixed to the frame which grips the periphery of a disc mounted on the shaft of the differential coupling
1900 "The water-cooled krebs brake"
1901 FR30714 Three point suspension gearbox: "Improvements in shifting and running mechanisms (See above)
US700950A MOTOR-VEHICLE
1902 FR318975 Cam brake: Brake for automobile or other car wheels
GB190304167A Improvements in Brakes for Vehicles
1904 FR340186 Expansion brake: Brake on rear wheels
Slack adjuster brake.
1907 FR376040 Krebs motor brake: Device for obtaining the braking of a motor vehicle by the engine
AT33177B Method and device for braking motor vehicles by means of the prime mover
CH43817A Device on four-stroke explosion engines for exerting a braking effect through the engine
GB190802328A Improvements in and relating to Braking Means for Automobile Vehicles
US934547A Braking means for automobile vehicles
1907 FR384090A Brake lever
AT36868B Device for the simultaneous activation of two brakes for all types of vehicles
GB190818853 Improvements in or relating to Braking Mechanism
CH43817A Device on four-stroke explosion engines for exerting a braking effect through the engine
1911 "Rear-brake drums with a second pair of shoes in their interior."

Lubrication

Date Patent Title
1902 FR319026A Engine lubrication system by a pump driven by exhaust gases
GB190304379A Improved Method of Lubricating Motors and Apparatus therefor
US752566A Device for Lubricating Motors and Machinery Driven Thereby
1902 FR327150A Lubrication system for engines and components
1907 FR376118A Lubricator with adjustable flow for internal combustion engine proportioning the oil flow to the developed power
AT33929B Device for controlling the supply of lubricant for internal combustion engines
GB190802334A Improvements in and relating to the Lubrication of Internal Combustion Engines
US927552A Engine-Lubricating Device
CH42771A Lubricator for internal combustion engine
1907 FR383261A Engine lubricating oil cooling system
GB190818852A Improvements in or relating to the Lubrication of Moving Parts of Engines
CH45206A Device for cooling the lubricating oil contained in the crankcase of an engine
1912 FR455065A Improvements to engine lubrication
GB191305951A Improvements in or relating to the Lubrication of Engines
1915 FR482110A Automatic lubricating device by oil circulation of wheel hubs
1915 FR482112A Device for lubricating the bearings of a heat engine, by oil circulation at an equal flow rate for all the bearings and at variable pressure

Steering and Suspension

Krebs irreversible steering

Le quadrilatère extérieur P&L https://archive.org/details/automobileaprac00haslgoog/page/438/mode/2up?q=panhard

Date Patent Title
1902 FR319975A Transversal spring suspension: Axle system and fore-carriage spring for motor vehicles
1902 FR327527A Steering wheel controls: A maneuvering device for the control of the motor car engines
US757815A APPARATUS FOR CONTROLLING THE SPEED OF MOTOR-CAR ENGINES
GB190309077A Improvements in Apparatus for Controlling the Speed of Motor Car Engines
1905 FR356801A Multidisk friction shock absorber: Suspension brake for vehicles
FR5900E Addition: Suspension brake for vehicles
GB190516354A Improvements in the Method of Checking the Vibrations Imparted to Vehicles Suspended by Springs and in Apparatus therefor
US859822A SHOCK-ABSORBER
US872825A APPARATUS FOR CHECKING OR DEADENING THE VIBRATIONS IMPARTED TO SUSPENDED VEHICLES
1911 FR439730A Screw and nut steering for motor vehicles
1914 FR475854A Suspension system for four-wheel motor cars
FR475517A Improvement in the construction of automobile steering axles
1915 FR482114A Disk hub: Driving device for driving wheels of motor vehicles

Flexible couplings

First A. C. KREBS research on flexible couplings:

Date Patent Title
1900 FR299088 Spherical bearing
1905 FR351702A Ball and spherical thrust bearing
AT24046B thrust bearing
1907 FR383188A Clutch connecting two shafts, one of which rotates at a variable speed and the other at a constant speed
The single disc coupling

1909 - The single disc coupling: "The device in question is substantially as follows: The ends of the shafts to be joined, facing each other, are provided with circular or cylindrical extended portions to which is secured alternately a membrane of suitable shape, of strong and flexible material such as leather, flexible fiber, suitably woven and prepared canvas or any other similar material. The dimensions of the said widened portions and the number of the points at which the material used for effecting the connection indicated is secured to them are in proportion to the strain to be transmitted."


Date Patent Title
1909 FR407594 Disc coupling: Device for connecting two transmission shafts
GB190926602 Improvements in or relating to Shaft Couplings
US976187A Device for coupling two transmission-shafts
The Tire elastomeric coupling

1911 - The FLECTOR joint: "In our models 10, 12 and 16 HP Tourism, the universal joint is constituted by the elastic device which we call "Flector" and which, formed of canvas and rubber, allows the relative displacement of the shafts without friction, without wear and without noise. Its adoption gives the car equipped with it a very smooth drive, and it does not require any maintenance." [73]

Date Patent Title
1911 FR445494A Tire coupling: Flexible joint for connecting two drive shafts
GB191217174A Improvements in or relating to Shaft Couplings
US1107315A Flexible joint for coupling two transmission-shafts

Trucks and industrial engines

Wood working machine tools

Affuteuse

1901-07-31_Revue-de-mécanique_brevets-P&L=machine-à-bois(affûteuse)+moteur-Centaure=soupapes-électro-aimants+carbu-Centaure+embrayage.pdf

Date Patent Title
1905 FR359604A Automatic circuit breaker
1906 FR362842A Locking system for tool trolleys and others
FR365473A Automatic tool release system in trolley machines
AT27469B Device for automatically removing the tool from the workpiece in machine tools with a reciprocating carriage
DK10576C Self-propelled device for putting the tool out of business in machine tools with reciprocating carriage
CH40671A Machine tool carriage with device for automatically disengaging tool and work piece
GB190707906A Improvements in or relating to Machine Tools with Sliding Tables or Carriages
US892854A SLIDING TABLE OR CARRIAGE FOR METAL-CUTTING MACHINES
1908 FR405501A Protective finger for sawing machines for wood or any other material
1911 FR444600A Gear Profile Checking Machine
1912 FR451001A Log sawing machine, automatic
GB191214154A Automatically Acting Machine for Cutting Up Timber
1913 FR19438E Addition: Log sawing machine, automatic
GB191324475A Automatically Acting Machine for Cutting Up Timber
FR474617A Apparatus for grinding the teeth of band saw blades


Other patents

https://archive.org/details/Theautomobile22/theautomobile16/page/n583/mode/2up?q=%22commandant+krebs%22

Date Patent Title
1903 FR329471A Silent exhaust tank
US746527A EXHAUST-BOX OR SILENCER FOR EXPLOSION-ENGINES
GB190306365A Improvements in Exhaust Boxes or Silencers for Explosion Engines
1907 FR376739A Detachable tire rim
GB190715724A An Improved Fitting or Attachment for the Wheels of Motor Cars and similar Vehicles
1913 FR458896A Removable wheel fixing device

Aviation

https://archive.org/details/aircraft219111912newy/page/200/mode/2up?q=%22commandant+krebs%22

https://archive.org/details/monoplanesbiplan00loenrich/page/192/mode/2up?q=farman

The 1909 engine of Tellier's monoplane

Categories: Alphonse Tellier (constructeur aéronautique), Tellier 1910 monoplane, Tellier aircraft, Émile Dubonnet

Moteur P&L V12J: https://gallica.bnf.fr/ark:/12148/bpt6k98100943/f220.image.r=panhard



Aircraft engines

1902 - Wilbur Wright to Octave Chanute: "I also enclose a letter from France which I take to be from Capt. Krebs, though my acquaintance with foreign customs of signing names leaves me in some doubt as to who it is from. Can you enlighten me?" [76]O. Chanute to W. Wright:"I return the French letter, which is from Commandant Krebs, formerly associated with Colonel Renard." [77]

Helicopters with Gustave PLAISANT

1912 - Gustave PLAISANT: "During fixed-point tensile tests that I recently carried out on a cycloidal thruster at the Laboratoire des Etablissements Panhard et Levassor with the gracious authorization of Commander Krebs, I was led to study different combinations of propellers [...]." [78]

The SELDEN Trial with Henry FORD

See also: [ https://de.wikipedia.org/wiki/Datei:Delamare_Deboutteville_Malandin._Brevet_160_267..jpg

In 1906 A. C. KREBS traveled to the United States to testify in the Selden case in which Panhard & Levassor was associated with Henry FORD as an opposing party. He probably met Henry FORD during the presentation of evidence for the Selden patent ( US549160) on October 29-30, 1906 in a New York garage. [79]

It should be noted the many similarities in principle between the Clément-Panhard car of 1898 and the Ford model T of 1908 (See above).

Work organization: Taylorism with Ch. de Fréminville

https://archive.org/details/mmoiresetcompte04unkngoog/page/712/mode/2up?q=%22commandant+krebs%22

1914 - Etudes Sociales: "Le Système Taylor et l'orqanisation scientifique du travail dans les ateliers. Communication de M. Charles de Fréminville, ingénieur des Arts et Manufactures, directeur technique des Etablissements Panhard et Levassor"

Date Review Article
1911 Revue de métallurgie Le jeune ingénieur
1914 Société d'économie sociale (in La Réforme Sociale) Le Système Taylor et l'orqanisation scientifique du travail dans les ateliers
1915 Revue de métallurgie James Hartness: Le facteur humain dans l’organisation du travail (Translation and introduction by charles de Fréminville)
1917 Revue de métallurgie L’utilisation des mutilés pour l’organisation du travail
1926 Revue de métallurgie 1-Évolution de l’organisation scientifique du travail à propos du Congrès International de Bruxelles (Octobre 1925)
Revue de métallurgie 2-Évolution de l’organisation scientifique du travail à propos du Congrès International de Bruxelles (Octobre 1925)

Innovations with Pr Arsène d'ARSONVAL

A. C. KREBS and the physician, physicist and academician Pr Arsène d'ARSONVAL were longtime friends.

1891: Pr s'Arsonval helps Levassor for his patent FR215695 dated 1891-08-21 for "Improvement in gas engines".

1894 - Société Française de Physique: Pr d'Arsonval demonstrates that the Panhard & Levassor petroleum engine is "the real engine applicable to road traction". [84]

1901-1905 - A. d'ARSONVAL having proved that benzole presented no risk of explosion in a confined environment, the French navy ordered benzole engines from A. C. KREBS for its NAÏADE-class submarines (See below).

1902 - A. d'ARSONVAL lends his laboratory at the Collège de France to A. C. KREBS for his preliminary experiments on his automatic carburetor.

1905 - A. d'ARSONVAL presents to the Academy of Sciences the note of A. C. KREBS on his electric dynamometric brake (see above) allowing to precisely measure the power of petroleum engines. [85]

1905 - A. C. KREBS participated in scientific spiritualism sessions organized by academician A. d'ARSONVAL within the framework of the General Psychological Institute. [86]

A. C. KREBS and Ettore BUGATTI

1913-01-24: Panhard & Levassor board - "Mr. Director [A. C. KREBS] reports on the visit he made to Mr. Bugatti in his factory in Molsheim [Alsace] where he was able to test the cars built by Mr. Bugatti and engines on dynamometric break. Mr. Director noticed different very interesting construction processes; However, he thinks that Mr. Bugatti, to achieve this result, makes the material work at its greatest limit of resistance, which is contrary to the ways of proceeding in our company which always tend to keep a fairly large margin in the resistance of the metal".

Military vehicles

Krebs also utilized his former military membership to supply the French Army with engines and vehicles including the 1904 Genty Armored car, the 1916 St Chamond tank, the Chatillon-Panhard 4x4 truck, and others.

Lebaudy & Astra airship engines

Year Airship Comments
1905 Jaune III Lebaudy, 2950m3, 50HP Panhard & Levassor, 33km/h
1906 Jaune IV Lebaudy, 3300m3, 50HP Panhard & Levassor, 36km/h
1906 Patrie Lebaudy, 61m, 10m30 diam., 3250m3, 70HP Panhard & Levassor, 41km/h
1908 République Lebaudy, 61m, 10m80 diam., 3700m3, 70HP Panhard & Levassor, 42km/h
1909 Russie Lebaudy, 61m, 10m80 diam., 3700m3, 70HP Panhard & Levassor
1909 Liberté Lebaudy, 65m80, 11m45 diam., 4600m3, 120HP Panhard & Levassor, 41km/h
1909 Colonel Renard Astra, 65m50, 10m80 diam., 4200m3, 120HP Panhard & Levassor, 38km/h
1909 España Astra, 65m50, 12m66 diam., 4200m3, 120HP Panhard & Levassor, 40km/h
1910 Morning Post Lebaudy, 103m, 12m diam., 10000m3, 2x135HP Panhard & Levassor
1910 Lebedi Lebaudy, 61m, 11m diam., 3700m3, 2x70HP Panhard & Levassor
1911 Capitaine Marchal Lebaudy, 85m, 12m80 diam., 7200m3, 2x70HP Panhard & Levassor, 45km/h
1911 Lieutenant Selle de Beauchamp Lebaudy, 89m, 14m60 diam., 10000m3, 2x80HP Panhard & Levassor, 45km/h
1912 Adjudant Réau Astra, 80m, 14m diam., 88500m3, 2x110HP Panhard & Levassor, 50km/h
1912 Lieutenant Chauré Astra, 80m, 14m diam., 88500m3, 2x110HP Panhard & Levassor, 50km/h

Submarines with benzol engines

1901-1905 - A. d'ARSONVAL having proved that benzole presented no risk of explosion in a confined environment, the French navy ordered benzole engines from A. C. KREBS for its NAÏADE-class submarines.

The Genty armored car

1913 - Panhard-Genty Machine Gun Car: Modification of 1912 on the Panhard 24 HP Model 1907.

A Panhard 24 HP was acquired by the French Ministry of War in 1904, to experiment with the military capabilities of automobiles and particularly for reconnaissance. Following the military maneuvers of September 1905, Captain Genty was authorized to install machine gun mounts on the Panhard 24 HP, of which he was the pilot. After transformation in 1906, the Panhard-Genty 24 HP was sent in December 1907 to Morocco and put into service on the borders of Algeria and Morocco. General Maurice Bailloud of the 19th army corps of Algeria calls for new machines. Clément-Bayard cars were shipped in 1908 and 1910 and proved to be unsuitable. Three Panhard 24 HP were then delivered again in 1912.

In 1903, Captain Genty proposed, jointly with A. C. KREBS, modifying a Panhard & Levassor chassis to make it an operational armored car.

It raises the ground clearance of the chassis by 32cm using springs of 0.90m at the front and 1.30m at the rear. The gasoline is distributed in 2 solid independent cylindrical tanks of 45 liters forming seats, with a range of 400 km on good roads and 250 km on bad roads.

The engine is a 35 HP allowing the vehicle to reach 65 km/h at “high speed”. It has a Krebs automatic carburetor and dual ignition (batteries and magneto), automatic lubrication, cooling by pump and radiator with insulated tank, free exhaust "at will", a leather cone clutch, gear change by sliding train and chain transmission.

The steering is irreversible, turning at 25°. The brakes are shoe brakes on the differential shaft and ribbon brakes on the rear wheels. The wheels are equipped with removable rims, Michelin system, allowing tire replacement in 4 minutes maximum. The risk of punctures is reduced thanks to the choice of 920 x 120 tires, of the “iron sole” type, resistant to both stones and thorns. Two spare tires are attached to the right of the car.

The car's armament included 2 Hotchkiss machine guns: one on its mount and a spare on its stirrups, to the right of the car. The machine gun used could be placed on one of the two legs located at the rear and in the middle part of the vehicle. The ammunition was divided into 9 boxes with a total capacity of 20,000 cartridges, including 3,600 in the trunks of the car.

The Chatillon-Panhard artillery tractor

In 1911 A. C. KREBS designed, jointly with the Chatillon Co, an all-terrain vehicle with four wheel drive and four wheel steering "fully adherent", using only one differential. This truck was meant for military and civil purposes and was used during World War I as artillery tractor.

The Saint-Chamond tank

The gasoline tethered balloon winches

1916 - A. C. Krebs transposes his hippomobile car steam winch of 1882 on his military trucks Panhard & Levassor, by adding an engine and a workstation dedicated to the balloon maneuvers so as to allow the device to remain operational along the way. [88]

Large projects manager (1884-1916)

See also: Panhard & Levassor (Deutsch), list of types.

1888-04-17 - A. C. KREBS: "Success in such a matter largely depends on the relationships that exist between all the dimensions and sizes of the elements that are brought together."

1897 - The Panhard & Levassor car of Pr A. d'ARSONVAL.

1902-02 - Automobile Magazine: "Indeed the attitude of the British maker has been well described as sitting on Panhard's doorstep, a good place also for the American maker. [89]

1902-04 - Automobile Magazine: "The French automobile is the result of long experimenting and thought devoted to each and every part, from the pin and lock bolt and washer, to the cylinder casting and piston rings". [90]

Retirement

"In 1916, when I reached the age when the need for rest began to be felt and where one could no longer develop the same physical activity, I resigned my functions as Director while retaining those of consulting engineer.

The previous year M. de Fréminville had to leave the Maison Panhard & Levassor to enter Le Creusot." [1]

A. C. KREBS and André CITROËN

Citroën Type A

Administrator of Savary & Rivière Co.

In the 1920s, A. C. Krebs was administrator of the Savary and Rivière company, of which he was a shareholder, and who is a manufacturer of agricultural machinery in Quimperlé where he retired.

Under his direction, the company diversifies its activities towards the manufacture of school furniture, railway equipment, military engineering, posts and telegraphs. [99]

The commemoration of the 50 years of the airship " La France"

1934 -

Commander of the Legion of Honor

In 1960, the United Kingdom Antarctic Place-Names Committee (UK-APC) named " Krebs Glacier" a glacier flowing west into the head of Charlotte Bay on the west coast of Graham Land in the Antarctic continent, after the name of Arthur C. Krebs who constructed and flew, with Charles Renard, the first dirigible airship capable of steady flight under control, in 1884.

1935 -

Family

Nicolas Krebs

Nicolas KREBS is a grandfather of A. C. KREBS. Born in Boppard on the left bank of the Rhine in 1786, he enlisted in Napoleon's army and took part in his campaigns. Wounded at Wilna in 1812, he was taken in by the Grand Duke Constantin of Russia, and became his chidren's tutor for 2 years in Saint-Petersburg. Back in France in 1814 he married Elisa Marie Dureau de la Buffardière. He was decorated with the Legion d'honneur on 1809-06-05.

Léonce Krebs

Campagnes dans les Alpes pendant la Révolution

Archiviste de la ville de Nice

Commandeur de la Légion d'honneur

Jean Krebs & Georges GUYNEMER

1918 - Henry Bordeaux: “Jean Krebs crystallized Georges Guynemer's vocation. He developed and specialized his taste for mechanics, separating it from vague abstractions and guiding it towards material realities and the wider experiences these procure. He deserves to be mentioned in any biography of Guynemer, and before passing on, it is proper that his premature loss should be cited and deplored. Highly esteemed as an aviator during the war, he made the best use of his substantial and reliable faculties in the work of observation. Airplane chasing did not attract him, but he knew how to use his eyes. He was killed in a landing accident at a time almost coincident with the disappearance of Guynemer. One of his escadrille mates described him thus: "With remarkable intelligence, and a perfectly even disposition, his chiefs valued him for his sang-froid, his quick eye, his exact knowledge of the services he was able to perform. Every time a mission was entrusted to him, everybody was sure that he would accomplish it, no matter what conditions he had to meet. He often had to face enemy airplanes better armed than his own, and in the course of a flight had been wounded in the thigh by an exploding shell. Nevertheless, he had continued to fly, only returning considerably later when his task was done. His death has left a great void in this escadrille. Men like him are difficult to replace..." [100]

Louis Krebs shipyard

1911 - Louis krebs presents a law thesis for which he was advised by his uncle, Charles de Fréminville, entitled "Work performance in the arsenals".

In 1933, Louis Krebs bought the Le Roy Frères shipyard in Concarneau, which he named "Chantier Krebs".

We owe him in 1931 with the refrigeration specialist Henri Alliot, the idea and the design of the cold room on tuna boats, as well as the creation of the concept of trawlers-tuna boats, these "mixed boats" which practice trawl fishing during the winter and tuna fishing in the summer. [101]

He will be elected mayor of Lanriec (1943-1945). [102]

Marie Krebs-Chamming's, his daughter, will describe her years in the service of the French Resistance during the 2nd World War in her book "I chose the storm" which will receive the Truth Prize in 1964.

Marguerite Paulet, born Krebs (1900-1979): the remarkable works


Papers presented to the French Académie des sciences

  • 18 August 1884 – A. C. KREBS and C. RENARD: About the " La France" airship.

https://gallica.bnf.fr/ark:/12148/bpt6k9804444j/f52.item

https://gallica.bnf.fr/ark:/12148/bpt6k9804444j/f73.item

https://gallica.bnf.fr/ark:/12148/bpt6k9804447s/f77.image.r=krebs : 1909_La-Technique-Automobile=le 'voluliquimètre' de Krebs au laboratoire.

In 1934, several months before Arthur Krebs's death, he was made a Commandeur of the Legion of Honor for his work in Aeronautics and for his contributions to the automotive industry.

See also

References

  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y 1924-06 - Autobiographic letter from Arthur Constantin KREBS to his cousin General de Montluisant (SHD-DE-2014-PA-40) asking him to explain his career following the article by Paul Renard in the "Revue Aéronautique" about the 40 years of the airship " La France" (Krebs arch.).
  2. ^ a b 1884-de-Grilleau - Dirigible airships their past, their present, their future. The Meudon balloon Renard and Krebs and the most recent advances in aeronautics. A critical look at the airship " La France".
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Krebs family archives deposited in Service historique de la Défense (DE 2014 PA 40 1).
  4. ^ a b c d e f g 1906 - Arthur Constantin KREBS testimony during the Selden case in New-York
  5. ^ 1878 - The Jollet and Babin shipyards: "P. D. JOLLET et L. BABIN, Constructeurs-Mécaniciens à Nantes. Navires en Bois et en Fer - Armements complets de navires. La maison P. D. Jollet et Babin (ancienne maison Jollet et Fils) remonte à plus d'un siècle. Mais depuis 20 ans la nouvelle maison s'est progressivement développée en prévision de la construction de grands bâtiments de mer, en bois et en fer, de la construction de machines à vapeur, marines et autres, et de tous les travaux métallurgiques. Aujourd'hui, son matériel, son personnel, ses ateliers de forge, de chaudronnerie, d'ajustage, de menuiserie, de pouliage et de gréement, lui permettent d'entreprendre la construction et la livraison complète, barre en main, des bâtiments en fer et en bois du plus grand tonnage. Elle peut livrer des machins à vapeur marines et des machines de terre (système Corliss ou autres), jusqu'à une puissance de huit cent chevaux, indiqués. Enfin, grâce à un outillage très-complet, elle entreprend les gros travaux de chaudronnerie, les ponts, les charpentes, les travaux d'artillerie, tous les travaux de chaudronnerie en cuivre pour les raffineries et les autres usines. Elle possède, en outre, un atelier de galvanisage, une fabrication de chaînes spéciales pour la marine, les chemins de fer, les fonderies, etc., etc. MM. Jollet et Babin ont une succursale pour les réparations à Saint-Nazaire et sont fermiers du bassin de carénage de Paimboeuf. En temps de travail ordinaire ils occupent 800 ouvriers."
  6. ^ 1881 - At the end of Jules Verne 's novel " Eight Hundred Leagues on the Amazon", his brother Paul Verne describes his boat the Saint-Michel III built by the Jollet and Babin shipyards.
  7. ^ 1935-02-03 - La Dépêche de Brest: "A visit to Mr. Arthur Krebs, who has just been promoted to Commander of the Legion of Honor".
  8. ^ 1861 - Practical course in marine steam engines: taught at the Maritime Engineering Application School / by Mr. A. de Fréminville
  9. ^ 1899-12-16 - Le Yacht: "The PHOENIX - petrol launch at the company of the former Panhard and Levassor establishments": "It evolves easily, thanks to the special forms that the author of the plans gave to his hull, thus gratifying it with a perfect speed, stability and ease of evolution. The author of these plans, as well as those of the engine, is Mr. Commander Krebs, former collaborator of Captain Renard, at the aerostatic camp of Meudon, currently director of the Société des Anciens Etablissements Panhard and Levassor under which the construction of the shell and the engine has been made."
  10. ^ electric-powered
  11. ^ the first full round trip flight
  12. ^ 1884-de-Grilleau: Dirigible airships, their past, their present, their future. The Meudon balloon Renard and Krebs and the most recent advances in aeronautics.
  13. ^ 1884-08 - French Académie des sciences: AIR NAVIGATION. On an airship aerostat. Note from MM. CH. RENARD and A. KREBS, presented by M. Hervé Mangon.
  14. ^ 1864 - Antoine de Fréminville (Krebs' father-in-law): "Practical treatise on shipbuilding".
  15. ^ 1886 - A. C. KREBS & C. RENARD receive the Ponti Prize from the French Academy of Sciences: "for the progress made in air navigation."
  16. ^ 1886 - Jules VERNE in Robur the Conqueror: "The dynamo-electric machines of Captain Krebs and Renard had developed a force of twelve horsepower and yielded a speed of six and a half yards per second. "
  17. ^ 1887 - L'Année scientifique et industrielle: Le canot électrique. Le Génie civil: Canot électrique de 8m85.
  18. ^ 1888-02-23 - Scientific American: " The torpedoe boat Gymnotus"
  19. ^ 1890-02-02 - The Daily Colonist: " A Submarine Gunboat"
  20. ^ 1894-09-08 - Scientific American: " The problem of submarine navigation [...] is in the hands of electrical engineers".
  21. ^ 1894-09-08 - Scientific American: "French submarine torpedo boats (Gymnote & Gustave Zédé)".
  22. ^ 1890 - Le Génie civil: Application of electricity to aiming guns.
  23. ^ 1901 - Revue municipale : " Sapeurs-pompiers de la ville de Paris", cont. .
  24. ^ 1904 - The Engineering Magazine - The International Automobile Exposition at Paris: Automobile Fire Engine of the Paris Fire Department.
  25. ^ 1904 - The Engineer: "The boiler is of the type invented by M. Durenne and Commandant Krebs and improved by M.M. Weyher et Richemond to facilitate the cleaning of the tubes.
  26. ^ 1904 - La Nature: Les pompes à incendie automobiles.
  27. ^ 1896-03-19 - Minutes of the Paris Firefighters Improvement Committee: Report of the trip of Col. Varigault, Commander Krebs and Captain Cordier in America for the Paris firefighters in 1895.
  28. ^ 1893-11-25 - Scientific American: New Fire Alarm.
  29. ^ 02/28/1889 - Minutes of the firefighters "Comité de perfectionnement".
  30. ^ 1896-05-22 - Journal des débats politiques et littéraires: "Accident at the Opera".
  31. ^ 1896-05-22 - La Presse: "L'accident de l'Opéra".
  32. ^ Les victimes du devoir - Detaille Jean-Baptiste-Edouard (1848-1912) - Réunion des musées nationaux - Grand-Palais (Paris)
  33. ^ 1915 - The Automobile Book: A Practical Treatise on the Construction, Operation and Care of Motor Cars by Charles E. Duryea: "Reasons for adopting wooden wheels: The public however, learns in time, and, having learned, is usually correct in its preferences; so within a few years, the wire wheel was condemned, not because it could not be made satisfactorily, but because it had not been, and the wood wheel became the accepted form. In turning to the wood wheel, however, makers swung to the other extreme, and generally adopted the now universal artillery type. This wheel is applied for strength, rather than for lightness or cheapness, and was largely adopted because of its use abroad."
  34. ^ a b c Original photos in 1900 of the 1899 C. S. Rolls car designed by A. C. KREBS on science and society.
  35. ^ "LA VOITURETTE KREBS" par Louis Lockaert, ingénieur École Centrale de Paris, LA FRANCE AUTOMOBILE, p.305, Paris, 1896.
  36. ^ a b c 1896-09-03 - Emile LEVASSOR license letter addressed to Arthur Constantin KREBS on his patent FR256344 (GB189619774A, BE124538) for a motor car.
  37. ^ 1896-12-22 - Emile Levassor to Gottlieb Daimler: "Pour la voiture avec changement de vitesses électrique, je vous assure que c'est une chose à examiner. Et il est bien fâcheux qu'à votre dernier voyage vous n'ayez pu avoir le temps nécessaire pour cet examen. Nous pensons que vous pourriez traiter avec l'inventeur en donnant une somme fixe et en payant une Royalty par voiture. C'est ainsi que nous avons traité. J'espère que vous trouverez occasion de venir à Paris pour établir votre jugement et en voyant cette seule voiture vous pouvez être certain que vous en verrez bien plus que ce que vous avez pu voir en Angleterre dans vos différents voyages."( Archives Nationales du monde du Travail)
  38. ^ 1892 - Portefeuille économique des machines: "Steam fire pump from the city of Paris (1888 model) - Multitube steam boiler with curvilinear tubes with automatic circulation and free dilatation by MM. Durenne & Krebs".
  39. ^ 1899 - The Automobile MAGAZINE: "The Horseless Fire Engine By Captain Cordier - French Electric Fire Department Wagon".
  40. ^ 1904 - The Automobile MAGAZINE : "Winning of the Vanderbilt Cup".
  41. ^ 1907 - Pierre Souvestre: Histoire de l'automobile
  42. ^ The 1906 Krebs testimony in the Selden case: "XQ96. You have mentioned only the name of Beau de Rochas. Are there other authorities that you recognize? A96. Every one of the men who study this subject with the view of establishing its theory are interesting, but at the present time we are not sufficiently in possession of the factors that would enable us to fully understand the reasons why it is possible to transform into work only a very small part of the heat developed in the combustion from which we are trying to realize work."
  43. ^ 1910-11-24 - Motor-Age
  44. ^ 1903 - The automobile: The Krebs carburetter.
  45. ^ 05/26/1913 - Panhard & Levassor Management Committee
  46. ^ 1919 - Motor truck and automobile motors and mechanism: a practical illustrated treatise on the power plant and motive parts of the modern vehicle, for owners, operators and repairmen
  47. ^ 1906-12 - The Electrician Vol 58 : : "AN ELECTRICAL DYNAMOMETER".
  48. ^ 1909-08-26 - Motor Age: SKETCH OF ELECTRIC CRADLE DYNAMOMETER Cont.: "Commander Krebs, of the Panhard & Levassor Co., appears to have been one of the earliest users of the cradle dynamometer for testing gasoline motor car engines and several members of this society have made use of it, for a number of years, with success".
  49. ^ a b Site: Clément-Panhard on the web.
  50. ^ 1901 Cycles Automobiles Clément - advertisement for the Clément-Panhard Car (VCP) designed by A. C. KREBS.
  51. ^ 1923 - Henry Ford "My Life and Work": "In 1905 I was at a motor race at Palm Beach, There was a big smash-up and a French car a Panhard racing car was Wrecked. We had entered our "Model K" — the high-powered six. I thought the foreign cars had smaller and better parts than we knew anything about. After the wreck I picked up a little valve strip stem. It was very light and very strong. I asked what it was made of. Nobody knew. I gave the stem to my assistant. "Find out all about this," I told him. "That is the kind of material we ought to have in our cars." He found eventually that it was a French steel and that there was vanadium in it. We tried every steel maker in America — not one could make vanadium steel. I sent to England for a man who understood how to make the steel commercially. The next thing was to get a plant the United Alloy Steel of Canton, Ohio to turn it out."
  52. ^ 1906-12-06 - Motor-Age, Cont.
  53. ^ a b 2001 - Voyages de Charles de Fréminville aux Etats-Unis: 1885-1898-1913-1919 (Yves Le Quesne)
  54. ^ 1904 - The brittleness of steel (H. Le Chatelier)
  55. ^ 1915-11-11 - Letter from Charles de Fréminville to René_de_Knyff (administrator of Panhard & Levassor).
  56. ^ 1902 - Le Monde moderne, p345: "It is necessary to wait until 1895 to witness a sensational entry of a motor boat into the races. Commander Krebs was one of the boldest promoters of mechanical navigation: it was, in fact, thanks to his studies and his encouragement, that the Panhard et Levassor Cy built a 16 horsepower engine, capable of giving a speed of 18 kilometers to the boat in which he was mounted; the day he was seen at Meulan, at the "Cercle de la Voile" regatta, was an important date in the history of this sport."
  57. ^ 1903-12 - Automobile Magazine: "Where speed wins out".
  58. ^ 1902-03-01 - Scientific American - THE MARINE AUTOMOBILE: THE RECENT FRENCH INVENTION OF THE AUTOMOBILE LAUNCH.
  59. ^ 1902 - Jules Beau - Photographie sportive: LUTECE 60cv (Panhard & Levassor), "The race for automobile boats. Are present: MM. Rives, Pierron, who came by car with Commander Krebs, Famechon, Colonel Renard [in a clear hat], Trillat, Amiot, Gaston Menier who came with his Yacht, Paillard, Lafitte, Morel-Fatio, etc."
  60. ^ 1902-03-01 - Scientific American (v86-n09): [The Marine Automobile https://archive.org/details/sim_scientific-american_1902-03-01_86_9/page/142/mode/2up?q=panhard]: "It is quite natural that the sport of autolaunch racing should receive its baptism in France, the native home of automobilism for the French, though poor at yachting as a nation, enjoy a well-merited reputation in the line of light craft for pleasure boating".
  61. ^ 1903-11 - Vingt-et-un I motorboat: 4 cyl. Panhard & Levassor designed by A. C. KREBS - 26 miles per hour. Architect: Clinton CRANE. Owner: Smith & Mabley.
  62. ^ Site: Mystic Seaport Museum
  63. ^ 1905 - "Auto boat race on the hudson."
  64. ^ 1903 - The Paris International Automobile Congress: Report by Mr. Louis Lohner on petrol-electric cars.
  65. ^ Scientific Américain 1903-01-24
  66. ^ 1904 - YEARBOOK OF THE AUTOMOTIVE AND MOTORBOAT INDUSTRY (Berlin): Automobiles with electric transmission from Lohner-Porsche and Panhard & Levassor
  67. ^ 1897 - Scientific American: Some New Horseless Carriages - "Messrs. Panhard & Levassor’s Phenix, which, in the opinion of those who are capable of judging of such matters, may be regarded as nearly reaching perfection". 1904 - Self-propelled vehicles.
  68. ^ 1904 - Self-propelled vehicles: "The demand for high-speed high-powered car led very soon to the production of four cylinder motors, of which Panhard-Levassor Centaure is the type."
  69. ^ 1904-01-30- Scientific American: "The advantages of the triple-cylinder motor have been long upheld in this country by' Mr. Charles E. Duryea, who has used this type of engine 'successfully for the past seven years; while in France, Panhard & Levassor brought out last year a triple-cylinder car, and the declaration in favor of the three-cylinder engine by this well-known firm has had much to do in drawing the attention of automobilists to its advantages".
  70. ^ 1900-05 - Automobile Magazine: Alcohol in Automobile Practice.
  71. ^ 1900 - Revue de mécanique: Panhard & Levassor transmission
  72. ^ 1902 - The automobile: "The Panhard type". 1904 - Self-propelled vehicles: "Details of the Panhard-Levassor Change Speed Gear"
  73. ^ 1916 Panhard & Levassor catalog
  74. ^ 1910 - Panhard & Levassor engine group: "Motive force and light". "City - countryside - workshop. Maximum: yield - simplicity - solidity. Minimum: Consumption - wear - size. Operates without supervision, on city gas, alcohol, benzol, gasoline, lean gas".
  75. ^ 1919 - Apex ( Hamilton Motors Company) - The twin-frame truck: "At the request of the Panhard-Levassor Co., of Paris, France, we have relinquished the name "Panhard", and since September 1, 1919, our truck has been known as the "Apex". Hamilton Motors Co., formerly Panhard Motors Co."
  76. ^ 1902-04-12 W. Wright to O. Chanute letter
  77. ^ 1902-05-05 O Chanute to W. Wright letter
  78. ^ 1912-01-01 - L'Aérophile: Vers l'hélicoptère.
  79. ^ The 1906 Krebs testimony in the Selden case: "XQ426. You never have seen the Selden engines, either the three cylinders engine or the one cylinder engine which you inspected at the garage in New York on October 29th and 30th, actually running or operating have you?"
  80. ^ 1937 - "D'Arsonval-65 ans à travers la science", Louis Chauvois, Paris.: "In the workshops [Panhard & Levassor] a 2 hp Daimler petrol engine established on a fixed frame operated the saw cutting the pieces of wood. Never mind ! We decided, one fine day in 1891, Levassor and I, with the workshop foreman MAYADE, to place this engine on a mobile chariot and we thus built one of the first machines to roll on the ground."
  81. ^ 1898 Panhard-M2F of Arsène d'ARSONVAL presented at the CNAM museum (Paris).
  82. ^ 1905 - [/info/en/?search=La_Nature LA NATURE, p100, Paris].
  83. ^ 1909 - General Psychological Institute: Psychic and Physiological Research Section: documents on Eusapia Palladino.
  84. ^ 1894-03-02 - Société française de physique: "M. d'Arsonval operates in front of the Company a petroleum engine built by the Panhard and Levassor Cy on the data of M. Daimler."
  85. ^ 1905-11-13 - Comptes rendus hebdomadaires des séances de l'Académie des sciences: Applied mechanics. On a dynamometric brake intended for measuring the power of motors, which allows the use, in electrical form, of most of the work developed. Note by M. A. Krebs, presented by M. A. d'Arsonval.
  86. ^ 1909 - Spiritualism sessions organized by academician Arsène d'Arsonval within the framework of the General Psychological Institute
  87. ^ 1914 - The Field Artillery Journal: "The Chatillon-Panhard traction-motor of total adhesion", by Commandant L. Ferrus.
  88. ^ 1921 - Tethered balloon winches: all variations of winches based on the Krebs system.
  89. ^ 1902-02 - Automobile Magazine: Indeed the attitude of the British maker has been well described as 'sitting on Panhard's doorstep', a good place also for the American maker".
  90. ^ 1902-04 - Automobile Magazine: "Thoroughness of French Workmanship" By C. R. Mabley.
  91. ^ 1902 - Motors and motor-driving: "The first Petrol car introduced into England", the Hon. Evelyn Ellis's 4HP Panhard & Levassor Car".
  92. ^ Site: Science & Society - Picture Library: C. S. ROLLS and his Panhard & Levassor race cars
  93. ^ 1901-06-21 - FIAT (1899-1915): "Telegram to the Council: Giovanni Agnelli says that, finding himself on his own in Paris with Eng. Enrico, sent from the factory by order of the President, examined a new light car from one of the best factories in Paris (Panhard & Levassor), very simple, economical and practical, and easy to build, and they thought it convenient to propose it for purchase. The reason for this proposal was to put an end to the continuous study of too long and costly experiments, and to be able to undertake a serious productive construction both in number and in quality."
  94. ^ 1905-08-04 - The Engineer: "The motor car works therefore grew very slowly until it was seen that the original Panhard type of vertical engine and transmission gear really represented a permanent standard of design."
  95. ^ 1905 - The Engineering and Mining Journal: "The traction engine has been used for freighting across the hard and level tracts in the Southwest, more particularly in the borax trade. More recently, the automobile has been brought into service in Nevada, and we learn from one of our professional friends that the journey of 100 miles from Tonopah to Bullfrog is made by him in seven hours. This reminds us of the journeys of inspection, covering several hundred miles, which Messrs. H. C Hoover and J. H. Curie made last year, in a Panhard motor car, over the hard surface of the West Australian desert plateau. The very idea of such comfortable locomotion will soften the unhappy memories of those who have had to ride the rocking camel or the refractory mule over the sand and spinifex of Western Australia, or the alkali and sagebrush of the Great Basin.".
  96. ^ 1905-11-22 - L'Auto-vélo: "The new progressive shock absorber that the Panhard house fitted to its 1906 vehicles was of particular interest to the King [ Alfonso XIII of Spain]. Twice he asks Commander Krebs for the name of the inventor of this ingenious device, but the Commander - whose well-known modesty has hardened his ears - neglects to answer..."
  97. ^ 1911 - Marcel DASSAULT decides to do an internship at Panhard, and notes: "After going through the various workshops, I arrived at the stage of tuning valveless 24hp cars. This work consisted, after the adjustment of the engine, in doing a road test of the chassis, the seat being composed of a simple toolbox. I thus learned to know the organization of a large mechanical factory. I also appreciated the work of the workers, their team spirit, their joy when the firm won a race or broke a record, or when a new type of particularly successful car was released." ( 'The Talisman', Paris, 1970, ed. J'ai Lu)
  98. ^ 1912 - Panhard & Levassor factory managed by A. C. KREBS: Paris workshops and staff (Paris: 2000 people) (Reims factory: 800 people).
  99. ^ 1935-03-26 - Letter from Georges Rivière to Marie Krebs widow of A. C. Krebs: "Colonel Krebs had agreed to preside over the destinies of Ets Savary and Rivière for several years and I had the honor of being able to appreciate his exceptional qualities of intelligence. His life will remain the perfect example of righteousness and dignity in all their manifestations."
  100. ^ 1918 - Henry Bordeaux: "Jean Krebs crystallized Georges Guynemer's vocation".
  101. ^ [1933-08-02 - L'Ouest-Éclair : "About keeping tuna on board". 1936-11-07 - Le Génie civil : "Installation of a cold room in a tuna boat".
  102. ^ 1945-04-01 - Le Yacht : "The tragic death of Mr. Louis krebs"

External links

https://franchissement.forumgratuit.org/t1062-des-aerostiers-aux-premiers-aviateurs

https://imagesdefense.gouv.fr/fr/le-treuil-de-la-saucisse-de-moiremont-legende-d-origine.html

http://www.pyperpote.tonsite.biz/listinmae/index.php/les-appareils-exposes/halls-1-et-2-la-grande-galerie/328-dirigeable-renard-et-kreps-la-france


http://www.pyperpote.tonsite.biz/listinmae/index.php/les-appareils-exposes/halls-1-et-2-la-grande-galerie/53-equipements-d-aerostation-militaire-renard

https://archive.org/details/pub_scientific-american

http://roglo.eu/roglo?p=arthur;n=krebs

https://www.fortunapost.com/


Other categories

Births_in_Vesoul Deaths_in_Quimperlé Alumni_of_the_Special_military_school_of_Saint-Cyr [4] Henri Dupuy de Lôme Gustave zédé Charles_Renard_(aviation_pioneer) La France (airship)

Forges_et_Chantiers_de_la_Méditerranée Société_Nouvelle_des_Forges_et_Chantiers_de_la_Méditerranée Canet_artillery Gymnote_(submarine,_1888)

Brigade_de_sapeurs-pompiers_de_Paris_people Brigade_de_sapeurs-pompiers_de_Paris_equipment Steam_engine_inventors Jean-François_Durenne

Automobile_industry_entrepreneurs People_associated_with_the_automotive_industry Designers_of_automobiles People_associated_with_automobile_racing Émile_Levassor Monument à Émile Levassor René_Panhard Hippolyte Panhard Émile Mayade Panhard_&_Levassor History of automobiles Panhard_&_Levassor_automobiles Anciennes usines Panhard et Levassor Panhard_&_Levassor_vehicles Clément-Panhard_vehicles Panhard_&_Levassor_automobile_engines Panhard_&_Levassor_racing_automobiles 1898 Paris-Amsterdam-Paris race 1898 racing automobiles Panhard & Levassor Type U3 Auto shows in Paris Charles de Fréminville Adolphe Clément-Bayard George Baldwin Selden

La République (airship) Saint Chamond tank

Georges Guynemer Arsène d'Arsonval Ettore Bugatti André Citroën Georges Guynemer Maurice Farman Henri Farman George Heath (racing driver) Henri Cissac Robert de Vogüé (1870-1936) Antarctica

Steering_wheels Sleeve valve engines Gyrocompasses Differentials Worm gears Couplings Rag joints Giubo Rotating shaft couplers Transmissions Final drives Automobile axles Mechanisms (engineering) Glaciers Hydrogen technologies Vélizy-Villacoublay Alberto Santos-Dumont Santos Dumont Collection Early aircraft Historical gas balloons Internal combustion engines Combustion engine inventors Chalais-Meudon Type ou modèle de dirigeable Dirigeable national d'études et de recherches aérospatiales in Meudon


-Timeline_of_hydrogen_technologies -Vélizy_–_Villacoublay_Air_Base -History_of_the_internal_combustion_engine