From Wikipedia, the free encyclopedia

Tin(II) fluoride

  Sn2+;   F
Names
IUPAC name
Tin(II) fluoride
Other names
Stannous fluoride
Identifiers
3D model ( JSmol)
ECHA InfoCard 100.029.090 Edit this at Wikidata
PubChem CID
RTECS number
  • XQ3450000
UNII
UN number 3288
  • InChI=1S/2FH.Sn/h2*1H;/q;;+2/p-2
  • F[Sn]F
Properties
SnF2
Molar mass 156.69 g/mol
Appearance colorless solid
Density 4.57 g/cm3
Melting point 213 °C (415 °F; 486 K)
Boiling point 850 °C (1,560 °F; 1,120 K)
31 g/100 mL (0 °C);
35 g/100 mL (20 °C);
78.5 g/100 mL (106 °C)
Solubility soluble in KOH, KF;
negligible in ethanol, ether, chloroform
Structure
Monoclinic, mS48
C2/c, No. 15
Pharmacology
A01AA04 ( WHO)
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamond Health 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroform Flammability 0: Will not burn. E.g. water Instability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogen Special hazards (white): no code
2
0
0
Flash point Non-flammable
Safety data sheet (SDS) ICSC 0860
Related compounds
Other anions
Tin(II) chloride,
Tin(II) bromide,
Tin(II) iodide
Other cations
Difluorocarbene,
Carbon tetrafluoride,
Difluorosilylene,
Silicon tetrafluoride,
Difluorogermylene,
Germanium tetrafluoride,
Tin tetrafluoride,
Lead(II) fluoride,
Lead(IV) fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  verify ( what is checkY☒N ?)

Tin(II) fluoride, commonly referred to commercially as stannous fluoride [1] [2] (from Latin stannum, 'tin'), is a chemical compound with the formula SnF2. It is a colourless solid used as an ingredient in toothpastes.

Oral health benefits

Stannous fluoride was introduced as an alternative to sodium fluoride for the prevention of cavities ( tooth decay). It was introduced for this purpose by Joseph Muhler and William Nebergall. In recognition for their innovation, these two individuals were inducted into the Inventor's Hall of Fame. [1]

The fluoride in stannous fluoride helps to convert the calcium mineral apatite in teeth into fluorapatite, which makes tooth enamel more resistant to bacteria-generated acid attacks. [3] The calcium present in plaque and saliva reacts with fluoride to form calcium fluoride on the tooth surface; over time, this calcium fluoride dissolves to allow calcium and fluoride ions to interact with the tooth and form fluoride-containing apatite within the tooth structure. [4] This chemical reaction inhibits demineralisation and can promote remineralisation of tooth decay. The resulting fluoride-containing apatite is more insoluble, and more resistant to acid and tooth decay. [4]

In addition to fluoride, the stannous ion has benefits for oral health when incorporated in a toothpaste. At similar fluoride concentrations, toothpastes containing stannous fluoride have been shown to be more effective than toothpastes containing sodium fluoride for reducing the incidence of dental caries and dental erosion, [5] [6] [7] [8] [9] as well as reducing gingivitis. [10] [11] [12] [13] [14] Some stannous fluoride-containing toothpastes also contain ingredients that allow for better stain removal. [15] [16] Stabilised stannous fluoride formulations allow for greater bioavailability of the stannous and fluoride ion, increasing their oral health benefits. [17] [18] A systematic review revealed stabilised stannous fluoride-containing toothpastes had a positive effect on the reduction of plaque, gingivitis and staining, with a significant reduction in calculus and halitosis (bad breath) compared to other toothpastes. [16] A specific formulation of stabilised stannous fluoride toothpastes has shown superior protection against dental erosion and dentine hypersensitivity compared to other fluoride-containing and fluoride-free toothpastes. [19]

Stannous fluoride was once used under the trade name Fluoristan in the original formulation of the toothpaste brand Crest, though it was later replaced with sodium monofluorophosphate under the trade name Fluoristat. Stabilised stannous fluoride is now the active ingredient in Crest/ Oral B Pro-Health brand toothpaste. Although concerns have been previously raised that stannous fluoride may cause tooth staining, this can be avoided by proper brushing and by using a stabilised stannous fluoride toothpaste. [15] [16] Any stannous fluoride staining that occurs due to improper brushing is not permanent, and Crest/Oral B Pro-Health states that its particular formulation is resistant to staining.

Production

SnF2 can be prepared by evaporating a solution of SnO in 40% HF. [20]

SnO + 2 HF → SnF2 + H2O

Aqueous solutions

Readily soluble in water, SnF2 is hydrolysed. At low concentration, it forms species such as SnOH+, Sn(OH)2 and Sn(OH)3. At higher concentrations, predominantly polynuclear species are formed, including Sn2(OH)22+ and Sn3(OH)42+. [21] Aqueous solutions readily oxidise to form insoluble precipitates of SnIV, which are ineffective as a dental prophylactic. [22] Studies of the oxidation using Mössbauer spectroscopy on frozen samples suggests that O2 is the oxidizing species. [23]

Lewis acidity

SnF2 acts as a Lewis acid. For example, it forms a 1:1 complex (CH3)3NSnF2 and 2:1 complex [(CH3)3N]2SnF2 with trimethylamine, [24] and a 1:1 complex with dimethylsulfoxide, (CH3)2SO·SnF2. [25]
In solutions containing the fluoride ion, F, it forms the fluoride complexes SnF3, Sn2F5, and SnF2(OH2). [26] Crystallization from an aqueous solution containing NaF produces compounds containing polynuclear anions, e.g. NaSn2F5 or Na4Sn3F10 depending on the reaction conditions, rather than NaSnF3. [20] The compound NaSnF3, containing the pyramidal SnF3 anion, can be produced from a pyridine–water solution. [27] Other compounds containing the pyramidal SnF3 anion are known, such as Ca(SnF3)2. [28]

Reducing properties

SnF2 is a reducing agent, with a standard reduction potential of Eo (SnIV/ SnII) = +0.15 V. [29] Solutions in HF are readily oxidised by a range of oxidizing agents (O2, SO2 or F2) to form the mixed-valence compound Sn3F8 (containing SnII and SnIV and no Sn–Sn bonds). [20]

Structure

The monoclinic form contains tetramers, Sn4F8, where there are two distinct coordination environments for the Sn atoms. In each case, there are three nearest neighbours, with Sn at the apex of a trigonal pyramid, and the lone pair of electrons sterically active. [30] Other forms reported have the GeF2 and paratellurite structures. [30]

Molecular SnF2

In the vapour phase, SnF2 forms monomers, dimers, and trimers. [26] Monomeric SnF2 is a non-linear molecule with an Sn−F bond length of 206 pm. [26] Complexes of SnF2, sometimes called difluorostannylene, with an alkyne and aromatic compounds deposited in an argon matrix at 12 K have been reported. [31] [32]

Safety

Stannous fluoride can cause redness and irritation if it is inhaled or comes into contact with the eyes. If ingested, it can cause abdominal pains and shock. [33] Rare but serious allergic reactions are possible; symptoms include itching, swelling, and difficulty breathing. Certain formulations of stannous fluoride in dental products may cause mild tooth discoloration; this is not permanent and can be removed by brushing, or can be prevented by using a stabilised stannous fluoride toothpaste. [15] [16] [34]

References

  1. ^ a b "National Inventors Hall of Fame Announces 2019 Inductees at CES" (Press release). National Inventors Hall of Fame. Retrieved 6 February 2019.
  2. ^ "Latin Names Variable Charge Metals". Nobel.SCAS.BCIT.ca/. British Columbia Institute of Technology Chemistry Department. Archived from the original on 22 July 2020. Retrieved 16 June 2013.
  3. ^ Groeneveld, A.; Purdell-Lewis, D. J.; Arends, J. (1976). "Remineralization of artificial caries lesions by stannous fluoride". Caries Research. 10 (3): 189–200. doi: 10.1159/000260201. ISSN  0008-6568. PMID  1063601.
  4. ^ a b Lussi, Adrian; Hellwig, Elmar; Klimek, Joachim (2012). "Fluorides - mode of action and recommendations for use". Schweizer Monatsschrift für Zahnmedizin = Revue Mensuelle Suisse d'Odonto-Stomatologie = Rivista Mensile Svizzera di Odontologia e Stomatologia. 122 (11): 1030–1042. ISSN  0256-2855. PMID  23192605.
  5. ^ West, N. X.; He, T.; Macdonald, E. L.; Seong, J.; Hellin, N.; Barker, M. L.; Eversole, S. L. (March 2017). "Erosion protection benefits of stabilized SnF2 dentifrice versus an arginine–sodium monofluorophosphate dentifrice: results from in vitro and in situ clinical studies". Clinical Oral Investigations. 21 (2): 533–540. doi: 10.1007/s00784-016-1905-1. ISSN  1432-6981. PMC  5318474. PMID  27477786.
  6. ^ Ganss, C.; Lussi, A.; Grunau, O.; Klimek, J.; Schlueter, N. (2011). "Conventional and Anti-Erosion Fluoride Toothpastes: Effect on Enamel Erosion and Erosion-Abrasion". Caries Research. 45 (6): 581–589. doi: 10.1159/000334318. ISSN  0008-6568. PMID  22156703. S2CID  45156274.
  7. ^ West, Nicola X.; He, Tao; Hellin, Nikki; Claydon, Nicholas; Seong, Joon; Macdonald, Emma; Farrell, Svetlana; Eusebio, Rachelle; Wilberg, Aneta (August 2019). "Randomized in situ clinical trial evaluating erosion protection efficacy of a 0.454% stannous fluoride dentifrice". International Journal of Dental Hygiene. 17 (3): 261–267. doi: 10.1111/idh.12379. ISSN  1601-5029. PMC  6850309. PMID  30556372.
  8. ^ Zhao, X.; He, T.; He, Y.; Chen, H. (2020-02-12). "Efficacy of a Stannous-containing Dentifrice for Protecting Against Combined Erosive and Abrasive Tooth Wear In Situ". Oral Health and Preventive Dentistry. 18 (1): 619–624. doi: 10.3290/j.ohpd.a44926. PMID  32700515.
  9. ^ Stookey, G.K.; Mau, M.S.; Isaacs, R.L.; Gonzalez-Gierbolini, C.; Bartizek, R.D.; Biesbrock, A.R. (2004). "The Relative Anticaries Effectiveness of Three Fluoride-Containing Dentifrices in Puerto Rico". Caries Research. 38 (6): 542–550. doi: 10.1159/000080584. ISSN  0008-6568. PMID  15528909. S2CID  489634.
  10. ^ Parkinson, C. R.; Milleman, K. R.; Milleman, J. L. (2020-03-26). "Gingivitis efficacy of a 0.454% w/w stannous fluoride dentifrice: a 24-week randomized controlled trial". BMC Oral Health. 20 (1): 89. doi: 10.1186/s12903-020-01079-6. ISSN  1472-6831. PMC  7098169. PMID  32216778.
  11. ^ Hu, Deyu; Li, Xue; Liu, Hongchun; Mateo, Luis R.; Sabharwal, Amarpreet; Xu, Guofeng; Szewczyk, Gregory; Ryan, Maria; Zhang, Yun-Po (April 2019). "Evaluation of a stabilized stannous fluoride dentifrice on dental plaque and gingivitis in a randomized controlled trial with 6-month follow-up". The Journal of the American Dental Association. 150 (4): S32–S37. doi: 10.1016/j.adaj.2019.01.005. ISSN  0002-8177. PMID  30797257. S2CID  73488958.
  12. ^ Mankodi, Suru; Bartizek, Robert D.; Winston, J. Leslie; Biesbrock, Aaron R.; McClanahan, Stephen F.; He, Tao (2005). "Anti-gingivitis efficacy of a stabilized 0.454% stannous fluoride/sodium hexametaphosphate dentifrice". Journal of Clinical Periodontology. 32 (1): 75–80. doi: 10.1111/j.1600-051X.2004.00639.x. ISSN  1600-051X. PMID  15642062.
  13. ^ Archila, Luis; Bartizek, Robert D.; Winston, J. Leslie; Biesbrock, Aaron R.; McClanahan, Stephen F.; He, Tao (2004). "The Comparative Efficacy of Stabilized Stannous Fluoride/Sodium Hexametaphosphate Dentifrice and Sodium Fluoride/Triclosan/Copolymer Dentifrice for the Control of Gingivitis: A 6-Month Randomized Clinical Study". Journal of Periodontology. 75 (12): 1592–1599. doi: 10.1902/jop.2004.75.12.1592. ISSN  1943-3670. PMID  15732859.
  14. ^ Clark-Perry, Danielle; Levin, Liran (December 2020). "Comparison of new formulas of stannous fluoride toothpastes with other commercially available fluoridated toothpastes: A systematic review and meta-analysis of randomised controlled trials". International Dental Journal. 70 (6): 418–426. doi: 10.1111/idj.12588. PMC  9379195. PMID  32621315. S2CID  220336087.
  15. ^ a b c He, Tao; Baker, Robert; Bartizek, Robert D.; Biesbrock, Aaron R.; Chaves, Eros; Terézhalmy, Geza (2007). "Extrinsic stain removal efficacy of a stannous fluoride dentifrice with sodium hexametaphosphate". The Journal of Clinical Dentistry. 18 (1): 7–11. ISSN  0895-8831. PMID  17410949.
  16. ^ a b c d Johannsen, A.; Emilson, C.-G.; Johannsen, G.; Konradsson, K.; Lingström, P.; Ramberg, P. (December 2019). "Effects of stabilized stannous fluoride dentifrice on dental calculus, dental plaque, gingivitis, halitosis and stain: A systematic review". Heliyon. 5 (12): e02850. Bibcode: 2019Heliy...502850J. doi: 10.1016/j.heliyon.2019.e02850. ISSN  2405-8440. PMC  6909063. PMID  31872105.
  17. ^ White, D. J. (1995). "A "return" to stannous fluoride dentifrices". The Journal of Clinical Dentistry. 6: 29–36. ISSN  0895-8831. PMID  8593190.
  18. ^ Tinanoff, N. (1995). "Progress regarding the use of stannous fluoride in clinical dentistry". The Journal of Clinical Dentistry. 6: 37–40. ISSN  0895-8831. PMID  8593191.
  19. ^ West, Nicola X.; He, Tao; Zou, Yuanshu; DiGennaro, Joe; Biesbrock, Aaron; Davies, Maria (February 2021). "Bioavailable gluconate chelated stannous fluoride toothpaste meta-analyses: Effects on dentine hypersensitivity and enamel erosion". Journal of Dentistry. 105: 103566. doi: 10.1016/j.jdent.2020.103566. hdl: 1983/34d78138-703d-484f-864f-ece3d3610d64. ISSN  1879-176X. PMID  33383100. S2CID  229940161.
  20. ^ a b c Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN  978-0-08-037941-8.
  21. ^ Séby, F.; Potin-Gautier, M.; Giffaut, E.; Donard, O.F.X. (2001). "A critical review of thermodynamic data for inorganic tin species". Geochimica et Cosmochimica Acta. 65 (18): 3041–3053. Bibcode: 2001GeCoA..65.3041S. doi: 10.1016/S0016-7037(01)00645-7.
  22. ^ David B. Troy, 2005, Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, ISBN  0-7817-4673-6, ISBN  978-0-7817-4673-1
  23. ^ Denes, Georges; Lazanas, George (1994). "Oxidation of SnF2 stannous fluoride in aqueous solutions". Hyperfine Interactions. 90 (1): 435–439. Bibcode: 1994HyInt..90..435D. doi: 10.1007/BF02069152. S2CID  96184099.
  24. ^ Hsu, C. C. & Geanangel, R. A. (1977). "Synthesis and studies of trimethylamine adducts with tin(II) halides". Inorg. Chem. 16 (1): 2529–2534. doi: 10.1021/ic50176a022.
  25. ^ Hsu, Chung Chun & Geanangel, R. A. (1980). "Donor and acceptor behavior of divalent tin compounds". Inorg. Chem. 19 (1): 110–119. doi: 10.1021/ic50203a024.
  26. ^ a b c Egon Wiberg, Arnold Frederick Holleman (2001) Inorganic Chemistry, Elsevier ISBN  0-12-352651-5.
  27. ^ Salami, Tolulope O.; Zavalij, Peter Y.; Oliver, Scott R.J (2004). "Synthesis and crystal structure of two tin fluoride materials: NaSnF3 (BING-12) and Sn3F3PO4". Journal of Solid State Chemistry. 177 (3): 800–805. Bibcode: 2004JSSCh.177..800S. doi: 10.1016/j.jssc.2003.09.013.
  28. ^ Kokunov Y. V.; Detkov D. G.; Gorbunova Yu. E.; Ershova M. M.; Mikhailov Yu. N. (2001). "Synthesis and Crystal Structure of Calcium Trifluorostannate(II)". Doklady Chemistry. 376 (4–6): 52–54. doi: 10.1023/A:1018855109716. S2CID  91430538.
  29. ^ Housecroft, C. E.; Sharpe, A. G. (2004). Inorganic Chemistry (2nd ed.). Prentice Hall. ISBN  978-0-13-039913-7.
  30. ^ a b Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications ISBN  0-19-855370-6
  31. ^ Bogdanov, SE; Faustov, VI; Egorov, MP; Nefedov, OM (1994). "Matrix IR spectra and quantum chemical studies of the reaction between difluorostannylene and hept-1-yne. The first direct observation of a carbene analog π-complex with alkyne". Russian Chemical Bulletin. 43 (1): 47–49. doi: 10.1007/BF00699133. S2CID  97064510.
  32. ^ S. E. Boganov, M. P. Egorov and O. M. Nefedov (1999). "Study of complexation between difluorostannylene and aromatics by matrix IR spectroscopy". Russian Chemical Bulletin. 48 (1): 98–103. doi: 10.1007/BF02494408. S2CID  94004320.
  33. ^ "Stannous fluoride (International Chemical Safety Cards: 0860)". International Labour Organization. Retrieved June 21, 2021.
  34. ^ "Stannous Fluoride-Dental". WebMD. Retrieved March 11, 2014.