Gliese_514_b Latitude and Longitude:

Sky map 13h 29m 59.7859s, +10° 22′ 37.7845″
From Wikipedia, the free encyclopedia
(Redirected from Gliese 514 b)
Gliese 514
Observation data
Epoch J2000       Equinox J2000
Constellation Virgo
Right ascension 13h 29m 59.7859s [1]
Declination 10° 22′ 37.7845″ [1]
Apparent magnitude (V) 9.029
Characteristics
Evolutionary stage main-sequence star
Spectral type M0Ve [2]
Apparent magnitude (J) 5.902±0.018 [3]
Apparent magnitude (H) 5.300±0.033 [3]
Astrometry
Radial velocity (Rv)14.606 [4] km/s
Proper motion (μ) RA: 1,127.34±0.03 [5]  mas/ yr
Dec.: −1,073.888±0.013 [5]  mas/ yr
Parallax (π)131.1013 ± 0.0270  mas [5]
Distance24.878 ± 0.005  ly
(7.628 ± 0.002  pc)
Details
Mass0.526 [6]  M
Radius0.611±0.043 [6]  R
Luminosity (bolometric)0.043 [6]  L
Surface gravity (log g)4.59 [6]  cgs
Temperature2,901 [7] - 3,727 [3]  K
Metallicity [Fe/H]−0.07±0.07 [3]  dex
Rotation28.0±2.9 [8]
Rotational velocity (v sin i)2.00 [9] km/s
Age8.25 [10]  Gyr
Other designations
BD+11 2576, HIP 65859, LTT 13925, Ross 490, TYC 895-317-1, 2MASS J13295979+1022376, Gaia EDR3 3738099879558957952 [1]
Database references
SIMBAD data

Gliese 514, also known as BD+11 2576 or HIP 65859, is a M-type main-sequence star, in the constellation Virgo 24.85 light-years away from the Sun. The proximity of Gliese 514 to the Sun was known exactly since 1988. [11]

Gliese 514's metallicity Fe/H index is largely unknown, with median values from -0.4 to +0.18 reported in the literature. This discrepancy is due to peculiarities of the stellar spectrum of Gliese 514. The spectrum peculiarities also affect the accuracy of the star's temperature measurement, [9] with reported values as low as 2901 K. [7] The spectrum of Gliese 514 shows emission lines, [2] but the star itself has a low starspot activity. [12]

Multiplicity surveys did not detect any stellar companions as of 2020. [13]

The Sun is currently calculated to be passing through the tidal tail of Gliese 514's Oort cloud. Thus, future interstellar objects passing through Solar system may originate from Gliese 514. [14]

Planetary system

The existence of a planet on a 15-day orbit around Gliese 514 was suspected since 2019. [15] However, that planet was not confirmed. Instead, in 2022, one Super-Earth planet, named Gliese 514 b, was discovered on an eccentric 140-day orbit by the radial velocity method. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to 202±11 K. [8]

The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio. [16]

The Gliese 514 planetary system [8]
Companion
(in order from star)
Mass Semimajor axis
( AU)
Orbital period
( days)
Eccentricity Inclination Radius
b >5.2±0.9  M🜨 0.422+0.014
−0.015
140.43±0.41 0.45+0.15
−0.14

References

  1. ^ a b c "BD+11 2576". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2022-04-17.
  2. ^ a b Lindegren, Lennart; Dravins, Dainis (2021), "Astrometric radial velocities for nearby stars", Astronomy & Astrophysics, 652: A45, arXiv: 2105.09014, Bibcode: 2021A&A...652A..45L, doi: 10.1051/0004-6361/202141344, S2CID  234778154
  3. ^ a b c d Lindgren, Sara; Heiter, Ulrike (2017), "Metallicity determination of M dwarfs", Astronomy & Astrophysics, 604: A97, arXiv: 1705.08785, Bibcode: 2017A&A...604A..97L, doi: 10.1051/0004-6361/201730715, S2CID  119216828
  4. ^ Manara, C. F.; et al. (2021), "PENELLOPE: The ESO data legacy program to complement the Hubble UV Legacy Library of Young Stars (ULLYSES)", Astronomy & Astrophysics, 650: A196, arXiv: 2103.12446, doi: 10.1051/0004-6361/202140639, S2CID  232320330
  5. ^ a b c Brown, A. G. A.; et al. (Gaia collaboration) (2021). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics. 649: A1. arXiv: 2012.01533. Bibcode: 2021A&A...649A...1G. doi: 10.1051/0004-6361/202039657. S2CID  227254300. (Erratum:  doi: 10.1051/0004-6361/202039657e). Gaia EDR3 record for this source at VizieR.
  6. ^ a b c d Berger, D. H.; Gies, D. R.; McAlister, H. A.; Brummelaar, T. A. ten; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Merand, A. (2006), "First Results from the CHARA Array. IV. The Interferometric Radii of Low‐Mass Stars", The Astrophysical Journal, 644 (1): 475–483, arXiv: astro-ph/0602105, Bibcode: 2006ApJ...644..475B, doi: 10.1086/503318, S2CID  14966363
  7. ^ a b Ghosh, Samrat; Ghosh, Supriyo; Das, Ramkrishna; Mondal, Soumen; Khata, Dhrimadri (2020), "Understanding the physical properties of young M dwarfs: NIR spectroscopic studies", Monthly Notices of the Royal Astronomical Society, 493 (3): 4533–4550, arXiv: 2002.05762, Bibcode: 2020MNRAS.493.4533K, doi: 10.1093/mnras/staa427
  8. ^ a b c Damasso, M.; et al. (2022), "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514", Astronomy & Astrophysics, 666: A187, arXiv: 2204.06376, doi: 10.1051/0004-6361/202243522, S2CID  248157318
  9. ^ a b Olander, T.; Heiter, U.; Kochukhov, O. (2021), "Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects", Astronomy & Astrophysics, 649: A103, arXiv: 2102.08836, Bibcode: 2021A&A...649A.103O, doi: 10.1051/0004-6361/202039747, S2CID  231942628
  10. ^ Maldonado, J.; Micela, G.; Baratella, M.; d'Orazi, V.; Affer, L.; Biazzo, K.; Lanza, A. F.; Maggio, A.; González Hernández, J. I.; Perger, M.; Pinamonti, M.; Scandariato, G.; Sozzetti, A.; Locci, D.; Di Maio, C.; Bignamini, A.; Claudi, R.; Molinari, E.; Rebolo, R.; Ribas, I.; Toledo-Padrón, B.; Covino, E.; Desidera, S.; Herrero, E.; Morales, J. C.; Suárez-Mascareño, A.; Pagano, I.; Petralia, A.; Piotto, G.; Poretti, E. (2020). "HADES RV programme with HARPS-N at TNG. XII. The abundance signature of M dwarf stars with planets". Astronomy and Astrophysics. 644: A68. arXiv: 2010.14867. Bibcode: 2020A&A...644A..68M. doi: 10.1051/0004-6361/202039478. S2CID  225094682.
  11. ^ Determinations of the parallaxes of BD +11 2576 and BD +18 683
  12. ^ Reiners, A. (2007), "The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation", Astronomy and Astrophysics, 467 (1): 259, arXiv: astro-ph/0702634, Bibcode: 2007A&A...467..259R, doi: 10.1051/0004-6361:20066991, S2CID  8672566
  13. ^ Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Kulkarni, Shrinivas R.; Winters, Jennifer G.; Irwin, Jonathan M. (2020), "Robo-AO M-dwarf Multiplicity Survey: Catalog", The Astronomical Journal, 159 (4): 139, arXiv: 2001.05988, Bibcode: 2020AJ....159..139L, doi: 10.3847/1538-3881/ab6ef1, S2CID  210718832
  14. ^ Portegies Zwart, S. (2021), "Oort cloud Ecology", Astronomy & Astrophysics, 647: A136, arXiv: 2011.08257, doi: 10.1051/0004-6361/202038888, S2CID  226976082
  15. ^ Barnes, J. R.; et al. (2019-06-11). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv: 1906.04644 [ astro-ph.EP].
  16. ^ Tanner, Angelle; Plavchan, Peter; Bryden, Geoff; Kennedy, Grant; Matrá, Luca; Cronin-Coltsmann, Patrick; Lowrance, Patrick; Henry, Todd; Riaz, Basmah; Gizis, John E.; Riedel, Adric; Choquet, Elodie (2020), "Herschel Observations of Disks around Late-type Stars", Publications of the Astronomical Society of the Pacific, 132 (1014): 084401, arXiv: 2004.12597, Bibcode: 2020PASP..132h4401T, doi: 10.1088/1538-3873/ab895f, S2CID  216553868