From Wikipedia, the free encyclopedia
Chuar Group
Stratigraphic range: Neoproterozoic,
800 to 742 Ma
Type Geological formation
Unit of Grand Canyon Supergroup
Sub-units2-Kwagunt Formation
1-Galeros Formation
Underlies Sixtymile Formation and, as part of the Great Unconformity, the Tapeats Sandstone
Overlies Nankoweap Formation
Thickness5,250 feet (1,600 m), at maximum
Lithology
Primary mudstone
Other dolomite and sandstone
Location
Region(eastern) Grand Canyon-(southwest) Colorado Plateau
  Arizona-(north)
  Utah-(southern)
Country  United States
Type section
Named forChuar Canyon [1]
Named byWalcott (1894) [1] and Noble (1910, 1914) [2] [3]

The Neoproterozoic Chuar Group consists of 5,250 feet (1,600 m) of fossiliferous, unmetamorphosed sedimentary strata that is composed of about 85% mudrock. The Group is the approximate upper half of the Grand Canyon Supergroup, overlain by the thin, in comparison, Sixtymile Formation, the top member of the multi-membered Grand Canyon Supergroup.

The mudrock is interbedded with meter-thick sandstone and dolomite beds. The mudrocks are typically gray to black when freshly exposed and weather to reddish or greenish colors. The fresh gray to black colors of the mudrocks are due to a high organic content. Some samples of these mudrocks contain high total organic carbon percentages that are as much 9.39 weight percent organic carbon. The sandstone beds often exhibit symmetrical ripple marks. These ripple marks are commonly draped with a thin veneer of mudstone with mudcracks. These strata have been subdivided into the Galeros Formation (lower) and the Kwagunt Formation (upper) using the base of the prominent, thick sandstone unit. [4] [5]

The Chuar Group is quite fossiliferous. The dolomite beds are associated with at least six different types of either stromatolites or microbially influenced carbonate precipitation. The gray and black mudrocks often contain an abundance of microfossils, including vase-shaped microfossils (VSMs) likely presentative of arcellinid testate amoebae, [6] acritarchs, "Sphaerocongregus variabilis", and organic chemicals characteristic of dinoflagellates. Finally, the enigmatic circular fossils of Chuaria circularis are found at various levels within the Chuar Group. [4] [5]

The types of fossils found and sedimentary strata comprising the Chuar Group are indicative of its deposition within a low-energy marine embayment. During the deposition of the Chuar Group, this embayment was influenced by tidal and wave processes, infrequent large storms, microbial activity and carbonate precipitation, and the accumulation of mud and organic matter in quiet water. The sediments and fossils suggest that the Chuar Group accumulated in relatively shallow water (tens of meters or less), possibly, with times of intermittent exposure on a tidal flat. [5]

Geologic sequence of Grand Canyon Supergroup

Three sections of Grand Canyon geology

The units of the Grand Canyon Supergroup: [7]

See also

References

  1. ^ a b Walcott, CD (1894) Precambrian igneous rocks of the Unkar terrane, Grand Canyon of the Colorado. 14th Annual Report for 1892/3, part 2, pp. 492–519, United States Geological Survey, Reston, Virginia.
  2. ^ Noble, LF (1910) Contributions to the geology of the Grand Canyon, Arizona; the geology of the Shinumo area (continued). American Journal of Science. Series 4, vol. 29, pp. 497–528.
  3. ^ Noble, LF (1914) The Shinumo quadrangle, Grand Canyon district, Arizona. Bulletin no. 549, US Geological Survey, Reston, Virginia.
  4. ^ a b Ford, TD, and CM Dehler (2003) "Grand Canyon Supergroup: Nankoweap Formation, Chuar Group, and Sixtymile Formation." in: Beus, S.S., Morales, M., eds., pp. 49–72, Grand Canyon Geology. Oxford University Press, New York.
  5. ^ a b c Dehler, CM, SM Porter, and JM Timmons (2012) "The Neoproterozoic Earth system revealed from the Chuar Group of Grand Canyon", in JM Timmons and KE Karlstrom, eds., pp. 49–72, Grand Canyon Geology: Two Billion Years of Earth's History. Special Paper no. 489, Geological Society of America, Boulder, Colorado.
  6. ^ Lahr, Daniel J.G.; Kosakyan, Anush; Lara, Enrique; Mitchell, Edward A.D.; Morais, Luana; Porfirio-Sousa, Alfredo L.; Ribeiro, Giulia M.; Tice, Alexander K.; Pánek, Tomáš; Kang, Seungho; Brown, Matthew W. (2019-03-18). "Phylogenomics and Morphological Reconstruction of Arcellinida Testate Amoebae Highlight Diversity of Microbial Eukaryotes in the Neoproterozoic". Current Biology. 29 (6): 991–1001.e3. doi: 10.1016/j.cub.2019.01.078. hdl: 10261/240246. ISSN  0960-9822. PMID  30827918. S2CID  72333352.
  7. ^ Connors, T.B., Tweet, J.S., and Santucci, V.L., 2020. Stratigraphy of Grand Canyon National Park. In: Santucci, V.L., Tweet, J.S., ed., pp. 54–74, Grand Canyon National Park: Centennial Paleontological Resource Inventory (Non-sensitive Version) . Natural Resource Report NPS/GRCA/NRR—2020/2103. National Park Service, Fort Collins, Colorado, 603 pp.

Popular Publications

External links