From Wikipedia, the free encyclopedia
Macro
Crystal structure of the macro-domain of human core histone variant macroh2a1.1
Identifiers
SymbolMacro
Pfam PF01661
Pfam clan CL0223
InterPro IPR002589
SCOP2 1vhu / SCOPe / SUPFAM
CDD cd02749
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, the Macro domain (often also written macrodomain) or A1pp domain is a module of about 180 amino acids which can bind ADP-ribose, an NAD metabolite, or related ligands. Binding to ADP-ribose can be either covalent or non-covalent: [1] in certain cases it is believed to bind non-covalently, [2] while in other cases (such as Aprataxin) it appears to bind both non-covalently through a zinc finger motif, and covalently through a separate region of the protein. [3]

Function

The domain was described originally in association with the ADP-ribose 1-phosphate (Appr-1-P)-processing activity (A1pp) of the yeast YBR022W protein and called A1pp. [4] However, the domain has been renamed Macro as it is the C-terminal domain of mammalian core histone macro-H2A. [5] [6] Macro domain proteins can be found in eukaryotes, in (mostly pathogenic) bacteria, in archaea and in ssRNA viruses, such as coronaviruses, Rubella and Hepatitis E viruses. In vertebrates the domain occurs in e.g. histone macroH2A, predicted poly-ADP-ribose polymerases (PARPs) and B aggressive lymphoma (BAL) protein.

ADP-ribosylation of proteins is an important post-translational modification that occurs in a variety of biological processes, including DNA repair, regulation of transcription, chromatin biology, maintenance of genomic stability, telomere dynamics, [7] cell differentiation and proliferation, [8] necrosis and apoptosis, [9] and long-term memory formation. [10] The Macro domain recognises the ADP-ribose nucleotide and in some cases poly-ADP-ribose, and is thus a high-affinity ADP-ribose-binding module found in a number of otherwise unrelated proteins. [11] ADP-ribosylation of DNA is relatively uncommon and has only been described for a small number of toxins that include pierisin, [12] scabin [13] and DarT. [14] [15] The Macro domain from the antitoxin DarG of the toxin-antitoxin system DarTG, both binds and removes the ADP-ribose modification added to DNA by the toxin DarT. [14] [15] The Macro domain from human, macroH2A1.1, binds an NAD metabolite O-acetyl-ADP-ribose. [16]

Class Subclass Species Activity
MacroH2A-like e ADP-ribose binding
MacroD-type ‘classic’ a, b, e, v ADP-ribosyl bond hydrolysis
Zn-dependent b, e ADP-ribosyl bond hydrolysis
GDAP2-like e ADP-ribose binding
ALC1-like b, e ADP-ribose binding or ADP-ribosyl bond hydrolysis
PARG-like PARG_cat e ADP-ribosyl bond hydrolysis
mPARG (DUF2263) b, e, v ADP-ribosyl bond hydrolysis
Macro2-type e, v ADP-ribosyl bond hydrolysis
SUD-M-like v RNA binding
DUF2362 e unknown
a, Archaea; b, Bacteria; e, Eukarya; v, Virus


Structure

The 3D structure of the Macro domain describes a mixed alpha/beta fold of a mixed beta sheet sandwiched between four helices with the ligand-binding pocket lies within the fold. [11] Several Macro domain-only domains are shorter than the structure of AF1521 and lack either the first strand or the C-terminal helix 5. Well conserved residues form a hydrophobic cleft and cluster around the AF1521-ADP-ribose binding site. [6] [11] [16] [17]

See also

References

  1. ^ Hassa PO, Haenni SS, Elser M, Hottiger MO (September 2006). "Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?". Microbiol. Mol. Biol. Rev. 70 (3): 789–829. doi: 10.1128/MMBR.00040-05. PMC  1594587. PMID  16959969.
  2. ^ Neuvonen M, Ahola T (January 2009). "Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites". J. Mol. Biol. 385 (1): 212–25. doi: 10.1016/j.jmb.2008.10.045. PMC  7094737. PMID  18983849.
  3. ^ Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, West SC (January 2008). "Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins". Nature. 451 (7174): 81–5. Bibcode: 2008Natur.451...81A. doi: 10.1038/nature06420. PMID  18172500. S2CID  4417693.
  4. ^ Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM (November 1999). "A biochemical genomics approach for identifying genes by the activity of their products". Science. 286 (5442): 1153–5. doi: 10.1126/science.286.5442.1153. PMID  10550052.
  5. ^ Aravind L (May 2001). "The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation". Trends Biochem. Sci. 26 (5): 273–5. doi: 10.1016/s0968-0004(01)01787-x. PMID  11343911.
  6. ^ a b Allen MD, Buckle AM, Cordell SC, Löwe J, Bycroft M (July 2003). "The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A". J. Mol. Biol. 330 (3): 503–11. doi: 10.1016/S0022-2836(03)00473-X. PMID  12842467.
  7. ^ Tennen RI, Chua KF (January 2011). "Chromatin regulation and genome maintenance by mammalian SIRT6". Trends in Biochemical Sciences. 36 (1): 39–46. doi: 10.1016/j.tibs.2010.07.009. PMC  2991557. PMID  20729089.
  8. ^ Ji Y, Tulin AV (October 2010). "The roles of PARP1 in gene control and cell differentiation". Current Opinion in Genetics & Development. 20 (5): 512–8. doi: 10.1016/j.gde.2010.06.001. PMC  2942995. PMID  20591646.
  9. ^ Han W, Li X, Fu X (2011). "The macro domain protein family: Structure, functions, and their potential therapeutic implications". Mutation Research. 727 (3): 86–103. doi: 10.1016/j.mrrev.2011.03.001. PMC  7110529. PMID  21421074.
  10. ^ Schreiber V, Dantzer F, Ame JC, de Murcia G (July 2006). "Poly(ADP-ribose): novel functions for an old molecule". Nature Reviews Molecular Cell Biology. 7 (7): 517–28. doi: 10.1038/nrm1963. PMID  16829982. S2CID  22030625.
  11. ^ a b c Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG (June 2005). "The macro domain is an ADP-ribose binding module". EMBO J. 24 (11): 1911–20. doi: 10.1038/sj.emboj.7600664. PMC  1142602. PMID  15902274.
  12. ^ Takamura-Enya, Takeji; Watanabe, Masahiko; Totsuka, Yukari; Kanazawa, Takashi; Matsushima-Hibiya, Yuko; Koyama, Kotaro; Sugimura, Takashi; Wakabayashi, Keiji (2001-10-23). "Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly". Proceedings of the National Academy of Sciences. 98 (22): 12414–12419. Bibcode: 2001PNAS...9812414T. doi: 10.1073/pnas.221444598. ISSN  0027-8424. PMC  60068. PMID  11592983.
  13. ^ Lyons, Bronwyn; Ravulapalli, Ravikiran; Lanoue, Jason; Lugo, Miguel R.; Dutta, Debajyoti; Carlin, Stephanie; Merrill, A. Rod (2016-05-20). "Scabin, a Novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies". The Journal of Biological Chemistry. 291 (21): 11198–11215. doi: 10.1074/jbc.M115.707653. ISSN  1083-351X. PMC  4900268. PMID  27002155.
  14. ^ a b Jankevicius, Gytis; Ariza, Antonio; Ahel, Marijan; Ahel, Ivan (2016). "The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA". Molecular Cell. 64 (6): 1109–1116. doi: 10.1016/j.molcel.2016.11.014. PMC  5179494. PMID  27939941.
  15. ^ a b Schuller, Marion; Butler, Rachel E.; Ariza, Antonio; Tromans-Coia, Callum; Jankevicius, Gytis; Claridge, Tim D. W.; Kendall, Sharon L.; Goh, Shan; Stewart, Graham R.; Ahel, Ivan (2021-08-18). "Molecular basis for DarT ADP-ribosylation of a DNA base". Nature. 596 (7873): 597–602. doi: 10.1038/s41586-021-03825-4. hdl: 2299/25013. ISSN  1476-4687. PMID  34408320. S2CID  237214909.
  16. ^ a b Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG (July 2005). "Splicing regulates NAD metabolite binding to histone macroH2A". Nat. Struct. Mol. Biol. 12 (7): 624–5. doi: 10.1038/nsmb956. PMID  15965484. S2CID  29456363.
  17. ^ Egloff MP, Malet H, Putics A, Heinonen M, Dutartre H, Frangeul A, Gruez A, Campanacci V, Cambillau C, Ziebuhr J, Ahola T, Canard B (September 2006). "Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains". J. Virol. 80 (17): 8493–502. doi: 10.1128/JVI.00713-06. PMC  1563857. PMID  16912299.
This article incorporates text from the public domain Pfam and InterPro: IPR002589