WASP-50 Latitude and Longitude:

Sky map 02h 54m 45.1343s, −10° 53′ 53.0260″
From Wikipedia, the free encyclopedia
WASP-50 / Chaophraya
Observation data
Epoch J2000       Equinox J2000
Constellation Eridanus
Right ascension 02h 54m 45.1343s [1]
Declination −10° 53′ 53.0260″ [1]
Apparent magnitude (V) 11.44
Characteristics
Spectral type G9V
Astrometry
Radial velocity (Rv)25.24 km/s
Proper motion (μ) RA: 3.281  mas/ yr
Dec.: 8.963  mas/ yr
Parallax (π)5.3816 ± 0.0540  mas [1]
Distance606 ± 6  ly
(186 ± 2  pc)
Details [2] [3]
Mass0.892+0.08
−0.074
  M
Radius0.843±0.031  R
Surface gravity (log g)4.5±0.1  cgs
Temperature5400±100  K
Metallicity−0.12±0.08
Rotation16.30 ± 0.50 d
Rotational velocity (v sin i)2.6±0.5 km/s
Age8.57±2.86  Gyr
Other designations
Gaia DR2 5160557726183065984, TYC 5290-462-1, GSC 05290-00462, 2MASS J02544513-1053530 [1]
Database references
SIMBAD data

WASP-50 is a G-type main-sequence star about 610 light-years away. The star is older than the Sun and slightly depleted in heavy elements compared to the Sun, and has a close to average starspot activity. [4] Despite its advanced age, the star is rotating rapidly, being spun up by the tides raised by giant planet on close orbit. [3]

The star was named Chaophraya in December 2019 by the Thai amateur astronomers. [5]

Planetary system

In 2011 a transiting hot superjovian planet b (named Maeping in 2019 [5]) was detected. [4] It has an equilibrium temperature of 1405±58 K. [2]


The WASP-50 planetary system [2] [4] [6]
Companion
(in order from star)
Mass Semimajor axis
( AU)
Orbital period
( days)
Eccentricity Inclination Radius
b / Maeping 1.437±0.068  MJ 0.0293±0.0013 1.955100±0.000005 0.01+0.02
−0.01
84.88±0.27 ° 1.138±0.026  RJ

References

  1. ^ a b c d WASP-50 -- Star
  2. ^ a b c Chakrabarty, Aritra; Sengupta, Sujan (2019), "Precise Photometric Transit Follow-up Observations of Five Close-in Exoplanets: Update on Their Physical Properties", The Astronomical Journal, 158 (1): 39, arXiv: 1905.11258, Bibcode: 2019AJ....158...39C, doi: 10.3847/1538-3881/ab24dd, S2CID  166227769
  3. ^ a b Maxted, P. F. L.; Serenelli, A. M.; Southworth, J. (2015), "A comparison of gyrochronological and isochronal age estimates for transiting exoplanet host stars", Astronomy & Astrophysics, 577: A90, arXiv: 1503.09111, Bibcode: 2015A&A...577A..90M, doi: 10.1051/0004-6361/201525774, S2CID  53324330
  4. ^ a b c Gillon, M.; Doyle, A. P.; Lendl, M.; Maxted, P. F. L.; Triaud, A. H. M. J.; Anderson, D. R.; Barros, S. C. C.; Bento, J.; Collier-Cameron, A.; Enoch, B.; Faedi, F.; Hellier, C.; Jehin, E.; Magain, P.; Montalban, J.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B.; Segransan, D.; Smith, A. M. S.; Southworth, J.; Udry, S.; West, R. G.; Wheatley, P. J. (2011), "WASP-50 b: a hot Jupiter transiting a moderately active solar-type star", Astronomy & Astrophysics, 533: A88, arXiv: 1108.2641, Bibcode: 2011A&A...533A..88G, doi: 10.1051/0004-6361/201117198, S2CID  46639973
  5. ^ a b "Two celestial objects named Chao Phraya and Maeping". nationthailand.com. 19 December 2019. Retrieved 2020-07-30.
  6. ^ Tregloan-Reed, Jeremy; Southworth, John (2012), "An extremely high photometric precision in ground-based observations of two transits in the WASP-50 planetary system", Monthly Notices of the Royal Astronomical Society, 431: 966–971, arXiv: 1212.0686, doi: 10.1093/mnras/stt227, S2CID  118869498