From Wikipedia, the free encyclopedia

Phosphatidylinositol 5-phosphate (PtdIns5P) is a phosphoinositide, one of the phosphorylated derivatives of phosphatidylinositol (PtdIns), that are well-established membrane-anchored regulatory molecules. Phosphoinositides participate in signaling events that control cytoskeletal dynamics, intracellular membrane trafficking, cell proliferation and many other cellular functions. Generally, phosphoinositides transduce signals by recruiting specific phosphoinositide-binding proteins to intracellular membranes. [1]

Phosphatidylinositol 5-phosphate is one of the 7 known cellular phosphoinositides with less understood functions. It is phosphorylated on position D-5 of the inositol head group, which is attached via phosphodiester linkage to diacylglycerol (with varying chemical composition of the acyl chains, frequently 1-stearoyl-2-arachidonoyl chain). In quiescent cells, on average, PtdIns5P is of similar or higher abundance as compared to PtdIns3P and ~20-100-fold below the levels of PtdIns4P ( Phosphatidylinositol 4-phosphate and PtdIns(4,5)P2 ( Phosphatidylinositol 4,5-bisphosphate). [2] Notably, steady-state PtdIns5P levels are more than 5-fold higher than those of PtdIns(3,5)P2. [3] [4]

PtdIns5P was first demonstrated by HPLC ( high pressure liquid chromatography) in mouse fibroblasts as a substrate for PtdIns(4,5)P2 synthesis by type II PIP kinases ( 1-phosphatidylinositol-5-phosphate 4-kinase). [5] In many cell types, however, PtdIns5P is not detected by HPLC due to technical limitations associated with its poor separation from the abundant PtdIns4P. [6] Rather, PtdIns5P is measured by the "mass assay", where PtdIns5P (as a part of the extracted cellular lipids) is converted in vitro by purified PtdIns5P 4-kinase to PtdIns(4,5)P2 that is subsequently quantified. [7]

Based on studies with the mass assay [6] and an improved HPLC technique, [8] PtdIns5P is detected in all studied mammalian cells. Most of the cellular PtdIns5P is found on cytoplasmic membranes whereas a smaller fraction resides in the nucleus. [9] The cytoplasmic and nuclear pools have distinct functions and regulation. [10]

Metabolism

Cellular PtdIns5P could be produced by D-5-phosphorylation of phosphatidylinositol or by dephosphorylation of PtdIns(3,5)P2 or PtdIns(4,5)P2. Each of these possibilities is experimentally supported. PtdIns5P is synthesized in vitro by PIKfyve, an enzyme principally responsible for PtdIns(3,5)P2 production, [11] [12] as well as by [PIP5K]s. [13] A major role for PIKfyve in synthesis of cellular PtdIns5P is suggested by data for reduced PtdIns5P mass levels upon heterologous overexpression of the enzymatically inactive PIKfyve point-mutant (PIKfyveK1831E) [6] [14] and PIKfyve silencing by small interfering RNAs. [15] Such a role is reinforced by data in transgenic fibroblasts with one genetically disrupted PIKfyve allele, demonstrating equal reduction of steady-state levels of PtdIns5P and PtdIns(3,5)P2. [3]

Likewise, similar reduction of PtdIns5P and PtdIns(3,5)P2 is found in fibroblasts with knockout of the PIKfyve activator [16] ArPIKfyve/ VAC14. [4] This experimental evidence coupled with the fact that the cellular levels of PtdIns5P exceed more than 5-fold those of PtdIns(3,5)P2 indicate a predominant role of PIKfyve in maintenance of the steady-state PtdIns5P levels via D-5 phosphorylation of phosphatidylinositol.

A role for the myotubularin protein family in PtdIns5P production has been proposed based on dephosphorylation of PtdIns(3,5)P2 by overexpressed myotubularin 1. [17] Concordantly, genetic ablation of the myotubularin-related protein 2 ( MTMR2) causes elevation of cellular PtdIns(3,5)P2 and a decrease of PtdIns5P. [18] The low cellular levels of PtdIns(3,5)P2 suggest that myotubularin phosphatase activity plays a minor role in maintaining the steady-state PtdIns5P levels. Importantly, PtdIns(3,5)P2 is synthesized from PtdIns3P by the PIKfyve complex that includes ArPIKfyve and Sac3/ Fig4. [19] Noteworthy, the PIKfyve complex underlies both PtdIns(3,5)P2 synthesis from and turnover to PtdIns3P. [20] The relative proportion of PtdIns(3,5)P2 turnover by myotubularin phosphatases versus that by Sac3 is unknown.

PtdIns5P can also be produced by dephosphorylation of PtdIns(4,5)P2. Such phosphatase activity is shown for Shigella flexneri effector IpgD [21] and two mammalian phosphatases – PtdIns(4,5)P2 4-phosphatase type I and type II. [22]

Currently, there is no known mammalian phosphatase to specifically dephosphorylate PtdIns5P. The pathway for PtdIns5P clearance involves synthesis of PtdIns(4,5)P2. [10]

Functions

The levels of PtdIns5P change significantly in response to physiological and pathological stimuli. Insulin, [8] [23] thrombin, [7] T-cell activation, [24] and cell transformation with nucleophosmin anaplastic lymphoma tyrosine kinase (NPM-ALK), [15] cause elevation of cellular PtdIns5P levels. In contrast, hypoosmotic shock [6] and histamine treatment [25] decrease the levels of PtdIns5P. In T-cells, two “downstream of tyrosine kinase” proteins DOK1 and DOK2 are proposed as PtdIns5P-binding proteins and effectors. [24]

As the other phosphoinositides, PtdIns5P is also present in the nucleus of mammalian cells. [26] The nuclear PtdIns5P pool is controlled by the nuclear type I PtdIns(4,5)P2 4-phosphatase that, in conjunction with the PIPKIIbeta kinase, plays a role in UV stress, apoptosis and cell cycle progression. [9] [27] [28]

The function of PtdIns5P in nuclear signaling likely involves ING2, a member of the ING family. The proteins of this family associate with and modulate the activity of histone acetylases and deacetylases as well as induce apoptosis through p53 acetylation. The ING2 interacts with PtdIns5P via its plant homeodomain (PHD) finger motif. [29]

In summary, the available evidence indicates that PIKfyve activity is the major source of steady-state cellular PtdIns5P. Under certain conditions, PtdIns5P is produced by dephosphorylation of bis-phosphoinositides. PtdIns5P is involved in regulation of both basic cellular functions and responses to a multitude of physiological and pathological stimuli by yet- to- be specified molecular mechanisms.

References

  1. ^ Di Paolo, Gilbert; De Camilli, Pietro (2006-10-12). "Phosphoinositides in cell regulation and membrane dynamics". Nature. 443 (7112): 651–657. Bibcode: 2006Natur.443..651D. doi: 10.1038/nature05185. ISSN  1476-4687. PMID  17035995. S2CID  10479545.
  2. ^ Shisheva, Assia (2003-09-01). "Regulating Glut4 vesicle dynamics by phosphoinositide kinases and phosphoinositide phosphatases". Frontiers in Bioscience: A Journal and Virtual Library. 8 (6): s945–946. doi: 10.2741/1101. ISSN  1093-9946. PMID  12957825.
  3. ^ a b Ikonomov, Ognian C.; Sbrissa, Diego; Delvecchio, Khortnal; et al. (2011-04-15). "The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve-/- embryos but normality of PIKfyve+/- mice". The Journal of Biological Chemistry. 286 (15): 13404–13413. doi: 10.1074/jbc.M111.222364. ISSN  1083-351X. PMC  3075686. PMID  21349843.
  4. ^ a b Zhang, Yanling; Zolov, Sergey N.; Chow, Clement Y.; et al. (2007-10-30). "Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice". Proceedings of the National Academy of Sciences of the United States of America. 104 (44): 17518–17523. Bibcode: 2007PNAS..10417518Z. doi: 10.1073/pnas.0702275104. ISSN  0027-8424. PMC  2077288. PMID  17956977.
  5. ^ Rameh, L. E.; Tolias, K. F.; Duckworth, B. C.; Cantley, L. C. (1997-11-13). "A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate". Nature. 390 (6656): 192–196. Bibcode: 1997Natur.390..192R. doi: 10.1038/36621. ISSN  0028-0836. PMID  9367159. S2CID  4403301.
  6. ^ a b c d Sbrissa, Diego; Ikonomov, Ognian C.; Deeb, Robert; Shisheva, Assia (2002-12-06). "Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells". The Journal of Biological Chemistry. 277 (49): 47276–47284. doi: 10.1074/jbc.M207576200. ISSN  0021-9258. PMID  12270933.
  7. ^ a b Morris, J. B.; Hinchliffe, K. A.; Ciruela, A.; et al. (2000-06-09). "Thrombin stimulation of platelets causes an increase in phosphatidylinositol 5-phosphate revealed by mass assay". FEBS Letters. 475 (1): 57–60. doi: 10.1016/s0014-5793(00)01625-2. ISSN  0014-5793. PMID  10854858. S2CID  41475679.
  8. ^ a b Sarkes, Deborah; Rameh, Lucia E. (2010-05-27). "A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides". The Biochemical Journal. 428 (3): 375–384. doi: 10.1042/BJ20100129. ISSN  1470-8728. PMC  2944655. PMID  20370717.
  9. ^ a b Zou, Jun; Marjanovic, Jasna; Kisseleva, Marina V.; et al. (2007-10-23). "Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis". Proceedings of the National Academy of Sciences of the United States of America. 104 (43): 16834–16839. Bibcode: 2007PNAS..10416834Z. doi: 10.1073/pnas.0708189104. ISSN  0027-8424. PMC  2040409. PMID  17940011.
  10. ^ a b Grainger, Deborah L.; Tavelis, Christodoulos; Ryan, Alexander J.; Hinchliffe, Katherine A. (2012). "The emerging role of PtdIns5P: another signalling phosphoinositide takes its place". Biochemical Society Transactions. 40 (1): 257–261. doi: 10.1042/BST20110617. ISSN  1470-8752. PMID  22260701.
  11. ^ Sbrissa, D.; Ikonomov, O. C.; Shisheva, A. (1999-07-30). "PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin". The Journal of Biological Chemistry. 274 (31): 21589–21597. doi: 10.1074/jbc.274.31.21589. ISSN  0021-9258. PMID  10419465.
  12. ^ Shisheva, A. (2001). "PIKfyve: the road to PtdIns 5-P and PtdIns 3,5-P(2)". Cell Biology International. 25 (12): 1201–1206. doi: 10.1006/cbir.2001.0803. ISSN  1065-6995. PMID  11748912. S2CID  29411107.
  13. ^ Tolias, K. F.; Rameh, L. E.; Ishihara, H.; et al. (1998-07-17). "Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate". The Journal of Biological Chemistry. 273 (29): 18040–18046. doi: 10.1074/jbc.273.29.18040. ISSN  0021-9258. PMID  9660759.
  14. ^ Shisheva, Assia (2008). "PIKfyve: Partners, significance, debates and paradoxes". Cell Biology International. 32 (6): 591–604. doi: 10.1016/j.cellbi.2008.01.006. ISSN  1065-6995. PMC  2491398. PMID  18304842.
  15. ^ a b Coronas, S.; Lagarrigue, F.; Ramel, D.; et al. (2008-07-25). "Elevated levels of PtdIns5P in NPM-ALK transformed cells: implication of PIKfyve". Biochemical and Biophysical Research Communications. 372 (2): 351–355. doi: 10.1016/j.bbrc.2008.05.062. ISSN  1090-2104. PMID  18501703.
  16. ^ Sbrissa, Diego; Ikonomov, Ognian C.; Strakova, Jana; et al. (2004). "A mammalian ortholog of Saccharomyces cerevisiae Vac14 that associates with and up-regulates PIKfyve phosphoinositide 5-kinase activity". Molecular and Cellular Biology. 24 (23): 10437–10447. doi: 10.1128/MCB.24.23.10437-10447.2004. ISSN  0270-7306. PMC  529046. PMID  15542851.
  17. ^ Tronchère, Hélène; Laporte, Jocelyn; Pendaries, Caroline; et al. (2004-02-20). "Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells". The Journal of Biological Chemistry. 279 (8): 7304–7312. doi: 10.1074/jbc.M311071200. ISSN  0021-9258. PMID  14660569.
  18. ^ Vaccari, Ilaria; Dina, Giorgia; Tronchère, Hélène; et al. (2011). "Genetic interaction between MTMR2 and FIG4 phospholipid phosphatases involved in Charcot-Marie-Tooth neuropathies". PLOS Genetics. 7 (10): e1002319. doi: 10.1371/journal.pgen.1002319. ISSN  1553-7404. PMC  3197679. PMID  22028665.
  19. ^ Sbrissa, Diego; Ikonomov, Ognian C.; Fu, Zhiyao; et al. (2007-08-17). "Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex". The Journal of Biological Chemistry. 282 (33): 23878–23891. doi: 10.1074/jbc.M611678200. ISSN  0021-9258. PMID  17556371.
  20. ^ Ikonomov, Ognian C.; Sbrissa, Diego; Fenner, Homer; Shisheva, Assia (2009-12-18). "PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis". The Journal of Biological Chemistry. 284 (51): 35794–35806. doi: 10.1074/jbc.M109.037515. ISSN  1083-351X. PMC  2791009. PMID  19840946.
  21. ^ Niebuhr, Kirsten; Giuriato, Sylvie; Pedron, Thierry; et al. (2002-10-01). "Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology". The EMBO Journal. 21 (19): 5069–5078. doi: 10.1093/emboj/cdf522. ISSN  0261-4189. PMC  129044. PMID  12356723.
  22. ^ Ungewickell, Alexander; Hugge, Christopher; Kisseleva, Marina; et al. (2005-12-27). "The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases". Proceedings of the National Academy of Sciences of the United States of America. 102 (52): 18854–18859. Bibcode: 2005PNAS..10218854U. doi: 10.1073/pnas.0509740102. ISSN  0027-8424. PMC  1323219. PMID  16365287.
  23. ^ Sbrissa, Diego; Ikonomov, Ognian C.; Strakova, Jana; Shisheva, Assia (2004). "Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation". Endocrinology. 145 (11): 4853–4865. doi: 10.1210/en.2004-0489. ISSN  0013-7227. PMID  15284192.
  24. ^ a b Guittard, Geoffrey; Gérard, Audrey; Dupuis-Coronas, Sophie; et al. (2009-04-01). "Cutting edge: Dok-1 and Dok-2 adaptor molecules are regulated by phosphatidylinositol 5-phosphate production in T cells". Journal of Immunology. 182 (7): 3974–3978. doi: 10.4049/jimmunol.0804172. ISSN  1550-6606. PMID  19299694.
  25. ^ Roberts, Hilary F.; Clarke, Jonathan H.; Letcher, Andrew J.; et al. (2005-05-23). "Effects of lipid kinase expression and cellular stimuli on phosphatidylinositol 5-phosphate levels in mammalian cell lines". FEBS Letters. 579 (13): 2868–2872. doi: 10.1016/j.febslet.2005.04.027. ISSN  0014-5793. PMID  15876433.
  26. ^ Barlow, Christy A.; Laishram, Rakesh S.; Anderson, Richard A. (2010). "Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum". Trends in Cell Biology. 20 (1): 25–35. doi: 10.1016/j.tcb.2009.09.009. ISSN  1879-3088. PMC  2818233. PMID  19846310.
  27. ^ Clarke, J. H.; Letcher, A. J.; D'santos, C. S.; et al. (2001-08-01). "Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells". The Biochemical Journal. 357 (Pt 3): 905–910. doi: 10.1042/0264-6021:3570905. ISSN  0264-6021. PMC  1222024. PMID  11463365.
  28. ^ Jones, David R.; Bultsma, Yvette; Keune, Willem-Jan; et al. (2006-09-01). "Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta". Molecular Cell. 23 (5): 685–695. doi: 10.1016/j.molcel.2006.07.014. ISSN  1097-2765. PMID  16949365.
  29. ^ Gozani, Or; Karuman, Philip; Jones, David R.; et al. (2003-07-11). "The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor". Cell. 114 (1): 99–111. doi: 10.1016/s0092-8674(03)00480-x. ISSN  0092-8674. PMID  12859901.