Sewage

From Wikipedia, the free encyclopedia
Raw sewage arriving at a sewage treatment plant in Syria

Sewage, or domestic/municipal wastewater, is a type of wastewater that is produced by a community of people. It is characterized by volume or rate of flow, physical condition, chemical and toxic constituents, and its bacteriologic status (which organisms it contains and in what quantities). It consists mostly of greywater (from sinks, bathtubs, showers, dishwashers, and clothes washers), blackwater (the water used to flush toilets, combined with the human waste that it flushes away); soaps and detergents; and toilet paper (less so in regions where bidets are widely used instead of paper). Proper collection and safe, nuisance-free disposal of the liquid wastes of a community are legally recognized as a necessity in an urbanized, industrialized society. [1]

Sewage usually travels from a building's plumbing either into a sewer, which will carry it elsewhere, or into an onsite sewage facility (of which there are many kinds). Whether it is combined with surface runoff in the sewer depends on the sewer design ( sanitary sewer or combined sewer). The reality is that most wastewater produced globally remains untreated, causing widespread water pollution, especially in low-income countries: a global estimate by UNDP and UN-Habitat is that 90% of all wastewater generated is released into the environment untreated. [2] In many developing countries the bulk of domestic and industrial wastewater is discharged without any treatment or after primary treatment only.

The term sewage is nowadays regarded as an older term and is being more and more replaced by "wastewater". [3] In general American English usage, the terms "sewage" and " sewerage" mean the same thing. [4] [5] [6] In common English usage, and in American technical and professional English usage, "sewerage" refers to the infrastructure that conveys sewage. [7]

Sources and types

Greywater samples before and after treatment in a constructed wetland in Peru

Sewage is made up of the wastewater from residences and institutions, carrying bodily wastes (primarily feces and urine), washing water, food preparation wastes, laundry wastes, and other waste products of normal living. This is classified as sewage or domestic wastewater.

Sewage in cities also includes the liquid-carried wastes from stores and service establishments serving the immediate community, termed commercial wastes. However, wastewater that result from industrial processes such as the production or manufacture of goods are classed as industrial wastewater, not as sewage and is usually collected and treated or pre-treated separately.

Sewage mixing with rainwater

Sewage can get mixed with surface runoff in combined sewers unless stormwater is collected separately. Surface runoff is also known as storm flow or overland flow. It is that portion of precipitation that runs rapidly over the ground surface to a defined channel. Precipitation absorbs gases and particulates from the atmosphere, dissolves and leaches materials from vegetation and soil, suspends matter from the land, washes spills and debris from urban streets and highways, and carries all these pollutants as wastes and may mix it with sewage.

Sewage may include stormwater runoff or urban runoff. Sewerage systems capable of handling storm water are known as combined sewer systems. This design was common when urban sewerage systems were first developed, in the late 19th and early 20th centuries. [8]:119 Combined sewers require much larger and more expensive treatment facilities than sanitary sewers. Heavy volumes of storm runoff may overwhelm the sewage treatment system, causing a spill or overflow. Sanitary sewers are typically much smaller than combined sewers, and they are not designed to transport stormwater. Backups of raw sewage can occur if excessive infiltration/inflow (dilution by stormwater and/or groundwater) is allowed into a sanitary sewer system. Communities that have urbanized in the mid-20th century or later generally have built separate systems for sewage (sanitary sewers) and stormwater, because precipitation causes widely varying flows, reducing sewage treatment plant efficiency. [9]

As rainfall travels over roofs and the ground, it may pick up various contaminants including soil particles and other sediment, heavy metals, organic compounds, animal waste, and oil and grease. Some jurisdictions require stormwater to receive some level of treatment before being discharged directly into waterways. Examples of treatment processes used for stormwater include retention basins, wetlands, buried vaults with various kinds of media filters, and vortex separators (to remove coarse solids). [10]

Pollutants

Organic pollutants and nutrients

Sewage is a complex mixture of chemicals, with many distinctive chemical characteristics. These include high concentrations of ammonium, nitrate, nitrogen, phosphorus, high conductivity (due to high dissolved solids), high alkalinity, with pH typically ranging between 7 and 8. The organic matter of sewage is measured by determining its biological oxygen demand (BOD) or the chemical oxygen demand (COD).

Sewage also contains organic matter that can cause odor and attract flies.

Pathogens

All categories of sewage are likely to carry pathogenic organisms that can transmit disease to humans and animals. Sewage contains human feces, and therefore often contains pathogens of one of the four types: [11] [12]

Sewage can be monitored for both disease-causing and benign organisms with a variety of techniques. Traditional techniques involve filtering, staining, and examining samples under a microscope. Much more sensitive and specific testing can be accomplished with DNA sequencing, such as when looking for rare organisms, attempting eradication, testing specifically for drug-resistant strains, or discovering new species. [14] [15] [16] Sequencing DNA from an environmental sample is known as metagenomics.

Micro-pollutants

Sewage also contains environmental persistent pharmaceutical pollutants. Trihalomethanes can also be present as a result of past disinfection.

Sewage has also been analyzed to determine relative rates of use of prescription and illegal drugs among municipal populations. [17] General socioeconomic demographics may be inferred as well. [18]

Management

Collection

A medieval waste pipe in Stockholm Old Town formerly deposited sewage on the street to be flushed away by rain.
Sewage canal of a medieval house as depicted in 1447 St. Barbara Altarpiece in the National Museum in Warsaw.

A system of sewer pipes (sewers) collects sewage and takes it for treatment or disposal. The system of sewers is called sewerage or sewerage system (see London sewerage system) in British English and sewage system in American English. Where a main sewerage system has not been provided, sewage may be collected from homes by pipes into septic tanks or cesspits, where it may be treated or collected in vehicles and taken for treatment or disposal. Properly functioning septic tanks require emptying every 2–5 years depending on the load of the system.

Current approaches to sewage management may include handling surface runoff separately from sewage, handling greywater separately from blackwater ( flush toilets), and coping better with abnormal events (such as peaks stormwater volumes from extreme weather).

Treatment

Sewage treatment is the process of removing the contaminants from sewage to produce liquid and solid ( sludge) suitable for discharge to the environment or for reuse. It is a form of waste management. A septic tank or other on-site wastewater treatment system such as biofilters or constructed wetlands can be used to treat sewage close to where it is created.

Sewage treatment results in sewage sludge which requires sewage sludge treatment before safe disposal or reuse. Under certain circumstances, the treated sewage sludge might be termed " biosolids" and can be used as a fertilizer.

In developed countries sewage collection and treatment is typically subject to local and national regulations and standards.

Before the 20th century, sewers usually discharged into a body of water such as a stream, river, lake, bay, or ocean. There was no treatment, so the breakdown of the human waste was left to the ecosystem. Today, the goal is that sewers route their contents to a wastewater treatment plant rather than directly to a body of water. In many countries, this is the norm; in many developing countries, it may be a yet-unrealized goal.

Disposal

Raw sewage is also disposed of to rivers, streams, and the sea in many parts of the world. Doing so can lead to serious pollution of the receiving water. This is common in developing countries and may still occur in some developed countries, for various reasons – usually related to costs. Sewage contains nutrients that may cause eutrophication of receiving water bodies; and can lead to ecotoxicity.

Ships at sea are forbidden from discharging their sewage overboard unless three miles or more from shore. [19]

Reuse of treated or untreated sewage

Sewage can be converted to biogas using anaerobic digestion. [20] Increasingly, agriculture is using untreated wastewater for irrigation. Cities provide lucrative markets for fresh produce, so are attractive to farmers. Because agriculture has to compete for increasingly scarce water resources with industry and municipal users, there is often no alternative for farmers but to use water polluted with urban waste, including sewage, directly to water their crops. There can be significant health hazards related to using water loaded with pathogens in this way, especially if people eat raw vegetables that have been irrigated with the polluted water.

The International Water Management Institute has worked in India, Pakistan, Vietnam, Ghana, Ethiopia, Mexico and other countries on various projects aimed at assessing and reducing risks of wastewater irrigation. They advocate a ‘multiple-barrier’ approach to wastewater use, where farmers are encouraged to adopt various risk-reducing behaviours. These include ceasing irrigation a few days before harvesting to allow pathogens to die off in the sunlight, applying water carefully so it does not contaminate leaves likely to be eaten raw, cleaning vegetables with disinfectant or allowing fecal sludge used in farming to dry before being used as a human manure. [21] The World Health Organization developed guidelines for safe use of wastewater in 2006. [22]

History

Terminology

The words "sewage" and " sewer" came from Old French essouier "to drain", which came from Latin exaquāre. Their formal Latin antecedents are exaquāticum and exaquārium.

Both words are descended from Old French assewer, derived from the Latin exaquare, "to drain out (water)".

See also

References

  1. ^ McGraw-Hill Encyclopedia of Science and Technology (View excerpt at Answers.com Archived 2009-02-12 at the Wayback Machine
  2. ^ Corcoran, E.; C. Nellemann; E. Baker; R. Bos; D. Osborn; H. Savelli, eds. (2010). Sick water? The central role of wastewater management in sustainable development. A rapid response assessment (PDF). Arendal, Norway: UNEP/GRID-Arendal. ISBN  978-82-7701-075-5. Archived from the original (PDF) on 2015-12-18.
  3. ^ Wastewater engineering: treatment and reuse (4th ed.). Metcalf & Eddy, Inc., McGraw Hill, USA. 2003. p.  1807. ISBN  0-07-112250-8.
  4. ^ Funk & Wagnall's Standard Dictionary (International Edition) New York, 1960, p. 1152.
  5. ^ Flexner, Sturat; Hauck, Leonore, eds. (1987) [1966]. The Random House Unabridged Dictionary (Second ed.). New York City: Random House (published 1993). p. 1754.
  6. ^ Neilson, William Allan; Knott, Thomas A., eds. (1934). Webster's new international dictionary of the English language. Second edition unabridged. An entirely new work (Hardocver) (Second ed.). Springfield, Mass: C. & C. Merriam Company. p. 2296.
  7. ^ "sewerage – definition of sewerage in English from the Oxford dictionary". Oxforddictionaries.com. Archived from the original on 2015-09-24. Retrieved 2015-09-04.
  8. ^ Metcalf & Eddy, Inc. (1972). Wastewater Engineering. New York: McGraw-Hill. ISBN  978-0-07-041675-8.
  9. ^ Burrian, Steven J., et al. (1999). "The Historical Development of Wet-Weather Flow Management." US Environmental Protection Agency (EPA). National Risk Management Research Laboratory, Cincinnati, OH. Document No. EPA/600/JA-99/275.
  10. ^ Burton Jr., G. Allen; Pitt, Robert E. (2001). "Chapter 2. Receiving Water Uses, Impairments, and Sources of Stormwater Pollutants". Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers. New York: CRC/Lewis Publishers. ISBN  978-0-87371-924-7.
  11. ^ World Health Organization (2006). Guidelines for the safe use of wastewater, excreta, and greywater. World Health Organization. p. 31. ISBN  9241546859. OCLC  71253096.
  12. ^ Andersson, K., Rosemarin, A., Lamizana, B., Kvarnström, E., McConville, J., Seidu, R., Dickin, S. and Trimmer, C. (2016). Sanitation, Wastewater Management and Sustainability: from Waste Disposal to Resource Recovery Archived 2017-06-01 at the Wayback Machine. Nairobi and Stockholm: United Nations Environment Programme and Stockholm Environment Institute. ISBN  978-92-807-3488-1, p. 56
  13. ^ Naddeo, Vincenzo; Liu, Haizhou (2020). "Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): what is its fate in urban water cycle and how can the water research community respond?". Environmental Science: Water Research & Technology. 6 (5): 1213–1216. doi: 10.1039/D0EW90015J.
  14. ^ Poliovirus detected from environmental samples in Israel Archived 2013-11-04 at the Wayback Machine
  15. ^ Drug resistant bug review: NDM-1 in New Delhi’s sewage, WHO calls to action, recent outbreaks of antibiotic resistant bacteria Archived 2013-11-05 at the Wayback Machine
  16. ^ Raw Sewage Harbors Diverse Viral Populations Archived 2013-06-07 at the Wayback Machine
  17. ^ 'Testing the waters': First International conference on drug wastewater analysis Archived 2014-02-09 at the Wayback Machine
  18. ^ Choi, Phil M. (7 October 2019). "Social, demographic, and economic correlates of food and chemical consumption measured by wastewater-based epidemiology". Proceedings of the National Academy of Sciences of the United States of America. 116 (43): 21864–21873. doi: 10.1073/pnas.1910242116. PMC  6815118. PMID  31591193.
  19. ^ (PDF). 19 August 2018 https://web.archive.org/web/20180819020650/http://infohouse.p2ric.org/ref/20/19926/P2_Documents/navydoc/gwpaper.pdf. Archived from the original (PDF) on 2018-08-19. Missing or empty |title= ( help)
  20. ^ Appels, Lise; Baeyens, Jan; Degrève, Jan; Dewil, Raf (2008). "Principles and potential of the anaerobic digestion of waste-activated sludge". Progress in Energy and Combustion Science. 34 (6): 755–781. doi: 10.1016/j.pecs.2008.06.002. ISSN  0360-1285.
  21. ^ Wastewater use in agriculture: Not only an issue where water is scarce! Archived 2014-04-09 at the Wayback Machine International Water Management Institute, 2010. Water Issue Brief 4
  22. ^ WHO (2006). WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater – Volume IV: Excreta and greywater use in agriculture Archived 17 October 2014 at the Wayback Machine. World Health Organization (WHO), Geneva, Switzerland