From Wikipedia, the free encyclopedia

Viridiplantae
An assortment of thallophyte Viridiplantae in a rock pool, Taiwan
Scientific classification Edit this classification
Domain: Eukaryota
Clade: Diaphoretickes
(unranked): Archaeplastida
(unranked): Viridiplantae
Cavalier-Smith, 1981
Subgroups
Synonyms
  • Plantae, Copeland, 1938, 1956 [2] [3]
  • Euchlorophyta Whittaker, 1969 [4]
  • Chlorophyta sensu van den Hoek & Jahns, 1978 [5]
  • Chlorobionta Jeffrey 1982, emend. Bremer 1985, emend. Lewis and McCourt 2004
  • Chlorobiota Kendrick and Crane 1997
  • Chloroplastida Adl et al., 2005
  • Viridiplantae Cavalier-Smith 1981 [6]
  • Phyta Barkley 1939 emed. Holt & Uidica 2007
  • Cormophyta Endlicher, 1836
  • Cormobionta Rothmaler, 1948
  • Euplanta Barkley, 1949
  • Telomobionta Takhtajan, 1964
  • Embryobionta Cronquist et al., 1966
  • Metaphyta Whittaker, 1969

Viridiplantae (literally "green plants") [6] constitute a clade of eukaryotic organisms that comprises approximately 450,000–500,000 species that play important roles in both terrestrial and aquatic ecosystems. [7] They include the green algae, which are primarily aquatic, and the land plants ( embryophytes), which emerged from within them. [8] [9] [10] Green algae traditionally excludes the land plants, rendering them a paraphyletic group. However it is accurate to think of land plants as a kind of alga. [11] Since the realization that the embryophytes emerged from within the green algae, some authors are starting to include them. [11] [12] [13] [14] [15] They have cells with cellulose in their cell walls, and primary chloroplasts derived from endosymbiosis with cyanobacteria that contain chlorophylls a and b and lack phycobilins. Corroborating this, a basal phagotroph archaeplastida group has been found in the Rhodelphydia. [16]

In some classification systems, the group has been treated as a kingdom, [17] under various names, e.g. Viridiplantae, Chlorobionta, or simply Plantae, the latter expanding the traditional plant kingdom to include the green algae. Adl et al., who produced a classification for all eukaryotes in 2005, introduced the name Chloroplastida for this group, reflecting the group having primary chloroplasts with green chlorophyll. They rejected the name Viridiplantae on the grounds that some of the species are not plants, as understood traditionally. [18] The Viridiplantae are made up of two clades: Chlorophyta and Streptophyta as well as the basal Mesostigmatophyceae and Chlorokybophyceae. [19] [20] Together with Rhodophyta and glaucophytes, Viridiplantae are thought to belong to a larger clade called Archaeplastida or Primoplantae.

Phylogeny and classification

Simplified phylogeny of the Viridiplantae, according to Leliaert et al. 2012. [21]

Cladogram

In 2019, a phylogeny based on genomes and transcriptomes from 1,153 plant species was proposed. [23] The placing of algal groups is supported by phylogenies based on genomes from the Mesostigmatophyceae and Chlorokybophyceae that have since been sequenced. Both the "chlorophyte algae" and the "streptophyte algae" are treated as paraphyletic (vertical bars beside phylogenetic tree diagram) in this analysis. [24] [25] The classification of Bryophyta is supported both by Puttick et al. 2018, [26] and by phylogenies involving the hornwort genomes that have also since been sequenced. [27] [28]

Archaeplastida
"chlorophyte algae"
"streptophyte algae"

Ancestrally, the green algae were flagellates. [21]


References

  1. ^ Tang, Qing (24 February 2020). "A one-billion-year-old multicellular chlorophyte". Nature Ecology and Evolution. 4 (5): 543–549. doi: 10.1038/s41559-020-1122-9. PMC  8668152.
  2. ^ Copeland HF (1938). "The kingdoms of organisms". The Quarterly Review of Biology. 13 (4): 383–420. doi: 10.1086/394568. S2CID  84634277.
  3. ^ Copeland HF (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books. p. 6.
  4. ^ Whittaker RH (January 1969). "New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms" (PDF). Science. 163 (3863): 150–60. CiteSeerX  10.1.1.403.5430. doi: 10.1126/science.163.3863.150. PMID  5762760. Archived from the original (PDF) on 2017-11-17. Retrieved 2015-01-31.
  5. ^ van den Hoek C, Jahns HM (1978). Einführung in die Phykologie (in German). Stuttgart: Georg Thieme Verlag. ISBN  9783135511016.
  6. ^ a b Cavalier-Smith T (1981). "Eukaryote kingdoms: seven or nine?". Bio Systems. 14 (3–4): 461–81. doi: 10.1016/0303-2647(81)90050-2. PMID  7337818.
  7. ^ Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, et al. (One Thousand Plant Transcriptomes Initiative) (October 2019). "One thousand plant transcriptomes and the phylogenomics of green plants". Nature. 574 (7780): 679–685. doi: 10.1038/s41586-019-1693-2. PMC  6872490. PMID  31645766.
  8. ^ Cocquyt E, Verbruggen H, Leliaert F, Zechman FW, Sabbe K, De Clerck O (February 2009). "Gain and loss of elongation factor genes in green algae". BMC Evolutionary Biology. 9: 39. doi: 10.1186/1471-2148-9-39. PMC  2652445. PMID  19216746.
  9. ^ Becker B (2007). Function and evolution of the vacuolar compartment in green algae and land plants (Viridiplantae). International Review of Cytology. Vol. 264. pp.  1–24. doi: 10.1016/S0074-7696(07)64001-7. ISBN  9780123742636. PMID  17964920.
  10. ^ Kim E, Graham LE (July 2008). Redfield RJ (ed.). "EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata". PLOS ONE. 3 (7): e2621. Bibcode: 2008PLoSO...3.2621K. doi: 10.1371/journal.pone.0002621. PMC  2440802. PMID  18612431.
  11. ^ a b Delwiche CF, Timme RE (June 2011). "Plants". Current Biology. 21 (11): R417–22. doi: 10.1016/j.cub.2011.04.021. PMID  21640897.
  12. ^ "Charophycean Green Algae Home Page". www.life.umd.edu. Retrieved 2018-02-24.
  13. ^ Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (February 2014). "From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes". BMC Evolutionary Biology. 14: 23. doi: 10.1186/1471-2148-14-23. PMC  3933183. PMID  24533922.
  14. ^ Delwiche CF, Cooper ED (October 2015). "The Evolutionary Origin of a Terrestrial Flora". Current Biology. 25 (19): R899–910. doi: 10.1016/j.cub.2015.08.029. PMID  26439353.
  15. ^ Parfrey LW, Lahr DJ, Knoll AH, Katz LA (August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13624–9. Bibcode: 2011PNAS..10813624P. doi: 10.1073/pnas.1110633108. PMC  3158185. PMID  21810989.
  16. ^ Bowles, Alexander M. C.; Williamson, Christopher J.; Williams, Tom A.; Lenton, Timothy M.; Donoghue, Philip C. J. (2022-10-31). "The origin and early evolution of plants". Trends in Plant Science. 28 (3): 312–329. doi: 10.1016/j.tplants.2022.09.009. hdl: 10871/131900. ISSN  1360-1385. PMID  36328872. S2CID  253303816.
  17. ^ "Viridiplantae". Retrieved 2009-03-08.
  18. ^ Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". The Journal of Eukaryotic Microbiology. 52 (5): 399–451. doi: 10.1111/j.1550-7408.2005.00053.x. PMID  16248873. S2CID  8060916.
  19. ^ Simon A, Glöckner G, Felder M, Melkonian M, Becker B (February 2006). "EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta): implications for the evolution of green plants (Viridiplantae)". BMC Plant Biology. 6: 2. doi: 10.1186/1471-2229-6-2. PMC  1413533. PMID  16476162.
  20. ^ Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH (September 2017). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences of the United States of America. 114 (37): E7737–E7745. Bibcode: 2017PNAS..114E7737S. doi: 10.1073/pnas.1620089114. PMC  5603991. PMID  28808007.
  21. ^ a b Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012). "Phylogeny and molecular evolution of the green algae" (PDF). Critical Reviews in Plant Sciences. 31 (1): 1–46. Bibcode: 2012CRvPS..31....1L. doi: 10.1080/07352689.2011.615705. S2CID  17603352.
  22. ^ Marin B (September 2012). "Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons". Protist. 163 (5): 778–805. doi: 10.1016/j.protis.2011.11.004. PMID  22192529.
  23. ^ Leebens-Mack, M.; Barker, M.; Carpenter, E.; et al. (2019). "One thousand plant transcriptomes and the phylogenomics of green plants". Nature. 574 (7780): 679–685. doi: 10.1038/s41586-019-1693-2. PMC  6872490. PMID  31645766.
  24. ^ Liang, Zhe; et al. (2019). "Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta". Advanced Science. 7 (1): 1901850. doi: 10.1002/advs.201901850. PMC  6947507. PMID  31921561.
  25. ^ Wang, Sibo; et al. (2020). "Genomes of early-diverging streptophyte algae shed light on plant terrestrialization". Nature Plants. 6 (2): 95–106. doi: 10.1038/s41477-019-0560-3. PMC  7027972. PMID  31844283.
  26. ^ Puttick, Mark; et al. (2018). "The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte". Current Biology. 28 (5): 733–745. doi: 10.1016/j.cub.2018.01.063. hdl: 10400.1/11601. PMID  29456145.
  27. ^ Zhang, Jian; et al. (2020). "The hornwort genome and early land plant evolution". Nature Plants. 6 (2): 107–118. doi: 10.1038/s41477-019-0588-4. PMC  7027989. PMID  32042158.
  28. ^ Li, Fay Wei; et al. (2020). "Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts". Nature Plants. 6 (3): 259–272. doi: 10.1038/s41477-020-0618-2. PMC  8075897. PMID  32170292.