From Wikipedia, the free encyclopedia
(Redirected from Teuber reaction)
Frémy's salt
Names
IUPAC name
Potassium nitrosodisulfonate
Identifiers
3D model ( JSmol)
ChemSpider
ECHA InfoCard 100.034.729 Edit this at Wikidata
EC Number
  • 238-219-0
PubChem CID
UNII
  • InChI=1S/2K.H2NO7S2/c;;2-1(9(3,4)5)10(6,7)8/h;;(H,3,4,5)(H,6,7,8)/q2*+1;/p-2
    Key: IHSLHAZEJBXKMN-UHFFFAOYSA-L
  • N([O])(S(=O)(=O)[O-])S(=O)(=O)[O-].[K+].[K+]
Properties
K2NO(SO3)2
Molar mass 268.33 g/mol (potassium salt)
Appearance Yellowish-brown solid
Hazards
GHS labelling:
GHS02: Flammable GHS07: Exclamation mark
Danger
H260, H302, H312, H332
P223, P231+P232, P280, P301+P312, P302+P352+P312, P304+P340+P312
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Frémy's salt is a chemical compound with the formula (K4[ON(SO3)22), sometimes written as (K2[NO(SO3)2]). It is a bright yellowish-brown solid, but its aqueous solutions are bright violet. [1] [2] The related sodium salt, disodium nitrosodisulfonate (NDS, Na2ON(SO3)2, CAS 29554-37-8) is also referred to as Frémy's salt. [3]

Regardless of the cations, the salts are distinctive because aqueous solutions contain the radical [ON(SO3)22−.

Applications

Frémy's salt, being a long-lived free radical, is used as a standard in electron paramagnetic resonance (EPR) spectroscopy, e.g. for quantitation of radicals. Its intense EPR spectrum is dominated by three lines of equal intensity with a spacing of about 13  G (1.3  mT). [4] [5] [6]

The inorganic aminoxyl group is a persistent radical, akin to TEMPO.

It has been used in some oxidation reactions, such as for oxidation of some anilines and phenols [7] [8] [9] [10] [11] allowing polymerization and cross-linking of peptides and peptide-based hydrogels. [12] [13]

It can also be used as a model for peroxyl radicals in studies that examine the antioxidant mechanism of action in a wide range of natural products. [14]

Preparation

Frémy's salt is prepared from hydroxylaminedisulfonic acid. Oxidation of the conjugate base gives the purple dianion:

HON(SO3H)2 → [HON(SO3)22− + 2 H+
2 [HON(SO3)22− + PbO2 → 2 [ON(SO3)22− + PbO + H2O

The synthesis can be performed by combining nitrite and bisulfite to give the hydroxylaminedisulfonate. Oxidation is typically conducted at low-temperature, either chemically or by electrolysis. [3] [2]

Other reactions:

HNO2 + 2 HSO
3
HON(SO
3
)2−
2
+ H2O
3 HON(SO
3
)2−
2
+ MnO
4
+ H+ → 3 ON(SO
3
)2−
2
+ MnO2 + 2 H2O
2 ON(SO
3
)2−
2
+ 4 K+ → K4[ON(SO3)22

History

Frémy's salt was discovered in 1845 by Edmond Frémy (1814–1894). [15] Its use in organic synthesis was popularized by Hans Teuber, such that an oxidation using this salt is called the Teuber reaction. [9] [10]

References

  1. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN  978-0-08-037941-8.
  2. ^ a b "Synthesis and Characterization of Potassium Nitrosodisulfonate, Frémy's Salt" (PDF). tripod.com.
  3. ^ a b Wehrli PA, Pigott F (1972). "Oxidation with the nitrosodisulfonate radical. I. Preparation and use of sodium nitrosodisulfonate: trimethyl-p-benzoquinone". Organic Syntheses. 52: 83. doi: 10.15227/orgsyn.052.0083.
  4. ^ Wertz JE, Bolton JR (1972). Electron Spin Resonance: Elementary Theory and Practical Applications. New York: McGraw-Hill. ISBN  978-0-07-069454-5. See page 463 for information on intensity measurements and page 86 for an EPR spectrum of Frémy's salt.
  5. ^ Colacicchi S, Carnicelli V, Gualtieri G, Di Giulio A (2000). "EPR study of Frémy's salt nitroxide reduction by ascorbic acid; influence of bulk pH values". Res. Chem. Intermed. 26 (9): 885–896. doi: 10.1163/156856700X00372. S2CID  98775951.
  6. ^ Zielonka J, Zhao H, Xu Y, Kalyanaraman B (October 2005). "Mechanistic similarities between oxidation of hydroethidine by Frémy's salt and superoxide: stopped-flow optical and EPR studies". Free Radical Biology & Medicine. 39 (7): 853–863. doi: 10.1016/j.freeradbiomed.2005.05.001. PMID  16140206.
  7. ^ Zimmer H, Lankin DC, Horgan SW (1971). "Oxidations with potassium nitrosodisulfonate (Frémy's radical). Teuber reaction". Chemical Reviews. 71 (2): 229–246. doi: 10.1021/cr60270a005.
  8. ^ Islam I, Skibo EB, Dorr RT, Alberts DS (October 1991). "Structure-activity studies of antitumor agents based on pyrrolo[1,2-a]benzimidazoles: new reductive alkylating DNA cleaving agents". Journal of Medicinal Chemistry. 34 (10): 2954–2961. doi: 10.1021/jm00114a003. PMID  1920349.
  9. ^ a b Teuber HJ, Benz S (1967). "Reaktionen mit Nitrosodisulfonat, XXXVI. Chinolin-chinone-(5.6) aus 5-Hydroxy-chinolinen". Chem. Ber. (in German). 100 (9): 2918–2929. doi: 10.1002/cber.19671000916.[ permanent dead link]
  10. ^ a b Teuber HJ (1972). "Use of Dipotassium Nitrosodisulfonate (Frémy's Salt): 4,5-Dimethyl-o-Benzoquinone". Org. Synth. 52: 88. doi: 10.15227/orgsyn.052.0088.
  11. ^ Xue W, Warshawsky D, Rance M, Jayasimhulu K (2002). "A metabolic activation mechanism of 7H-dibenzo[c,g]carbozole via o-quinone. Part 1: synthesis of 7H-dibenzo[c,g]carbozole-3,4-dione and reactions with nucleophiles". Polycyclic Aromatic Compounds. 22 (3–4): 295–300. doi: 10.1080/10406630290026957. S2CID  95507636.
  12. ^ Wilchek M, Miron T (March 2015). "Mussel-inspired new approach for polymerization and cross-linking of peptides and proteins containing tyrosines by Frémy's salt oxidation". Bioconjugate Chemistry. 26 (3): 502–510. doi: 10.1021/bc5006152. PMID  25692389.
  13. ^ Fichman G, Schneider JP (2021). "Utilizing Frémy's Salt to Increase the Mechanical Rigidity of Supramolecular Peptide-Based Gel Networks". Frontiers in Bioengineering and Biotechnology. 8: 594258. doi: 10.3389/fbioe.2020.594258. PMC  7813677. PMID  33469530.
  14. ^ Liu ZL, Han ZX, Chen P, Liu YC (November 1990). "Stopped-flow ESR study on the reactivity of vitamin E, vitamin C and its lipophilic derivatives towards Frémy's salt in micellar systems". Chemistry and Physics of Lipids. 56 (1): 73–80. doi: 10.1016/0009-3084(90)90090-E. PMID  1965427.
  15. ^ See:

Further reading