From Wikipedia, the free encyclopedia

In particle physics, a tetraquark is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, [1] the modern theory of strong interactions. A tetraquark state is an example of an exotic hadron which lies outside the conventional quark model classification. A number of different types of tetraquark have been observed. [2] [3]

History and discoveries

Several tetraquark candidates have been reported by particle physics experiments in the 21st century. The quark contents of these states are almost all qqQQ, where q represents a light ( up, down or strange) quark, Q represents a heavy ( charm or bottom) quark, and antiquarks are denoted with an overline. The existence and stability of tetraquark states with the qqQQ (or qqQQ) have been discussed by theoretical physicists for a long time, however these are yet to be reported by experiments. [4]

Colour flux tubes produced by four static quark and antiquark charges, computed in lattice QCD. [5] Confinement in quantum chromodynamics leads to the production of flux tubes connecting colour charges. The flux tubes act as attractive QCD string-like potentials.
Timeline

In 2003, a particle temporarily called X(3872), by the Belle experiment in Japan, was proposed to be a tetraquark candidate, [6] as originally theorized. [7] The name X is a temporary name, indicating that there are still some questions about its properties to be tested. The number following is the mass of the particle in MeV/c2.

In 2004, the DsJ(2632) state seen in Fermilab's SELEX was suggested as a possible tetraquark candidate. [8]

In 2007, Belle announced the observation of the Z(4430) state, a
c

c

d

u
tetraquark candidate. There are also indications that the Y(4660), also discovered by Belle in 2007, could be a tetraquark state. [9]

In 2009, Fermilab announced that they have discovered a particle temporarily called Y(4140), which may also be a tetraquark. [10]

In 2010, two physicists from DESY and a physicist from Quaid-i-Azam University re-analyzed former experimental data and announced that, in connection with the
ϒ
(5S) meson
(a form of bottomonium), a well-defined tetraquark resonance exists. [11] [12]

In June 2013, the BES III experiment in China and the Belle experiment in Japan independently reported on Zc(3900), the first confirmed four-quark state. [13]

In 2014, the Large Hadron Collider experiment LHCb confirmed the existence of the Z(4430) state with a significance of over 13.9 σ. [14] [15]

In February 2016, the DØ experiment reported evidence of a narrow tetraquark candidate, named X(5568), decaying to
B0
s

π±
. [16] In December 2017, DØ also reported observing the X(5568) using a different
B0
s
final state. [17] However, it was not observed in searches by the LHCb, [18] CMS, [19] CDF, [20] or ATLAS [21] experiments.

In June 2016, LHCb announced the discovery of three additional tetraquark candidates, called X(4274), X(4500) and X(4700). [22] [23] [24]

In 2020, LHCb announced the discovery of a
c

c

c

c
tetraquark: X(6900). [2] [25] In 2022, ATLAS observed X(6900). [26]

In 2021, LHCb announced the discovery of four additional tetraquarks, including ccus. [3]

In 2022, LHCb announced the discovery of csud and csud. [27]

See also

References

  1. ^ U. Kulshreshtha; D. S. Kulshreshtha; J. P. Vary (2015). "Hamiltonian, path integral and BRST formulations of large N scalar QCD2 on the light-front and spontaneous symmetry breaking". European Physical Journal C. 75 (4): 174. arXiv: 1503.06177. Bibcode: 2015EPJC...75..174K. doi: 10.1140/epjc/s10052-015-3377-x. S2CID  119102254.
  2. ^ a b R. Aaij; et al. ( LHCb collaboration) (2020). "Observation of structure in the J/ψ-pair mass spectrum". Science Bulletin. 65 (23): 1983–1993. arXiv: 2006.16957. Bibcode: 2020SciBu..65.1983L. doi: 10.1016/j.scib.2020.08.032. PMID  36659056. S2CID  220265852.
  3. ^ a b LHCb collaboration; Aaij, R.; Beteta, C. Abellán; Ackernley, T.; Adeva, B.; Adinolfi, M.; Afsharnia, H.; Aidala, C. A.; Aiola, S.; Ajaltouni, Z.; Akar, S. (2021-03-02). "Observation of New Resonances Decaying to J/ψK+ and J/ψϕ". Physical Review Letters. 127 (8): 082001. arXiv: 2103.01803. Bibcode: 2021PhRvL.127h2001A. doi: 10.1103/PhysRevLett.127.082001. PMID  34477418. S2CID  232092368.
  4. ^ Si-Qiang, Luo; Kan, Chen; Xiang, Liu; Yan-Rui, Liu; Shi-Lin, Zhu (25 October 2017). "Exotic tetraquark states with the qqQQ configuration" (PDF). European Physical Journal C. 77:709 (10). doi: 10.1140/epjc/s10052-017-5297-4. S2CID  119377466. Retrieved 26 November 2017.
  5. ^ "The charming case of X(3872) (APS April 2008) | symmetry magazine". www.symmetrymagazine.org. 2008-04-13. Retrieved 2023-11-09.
  6. ^ D. Harris (13 April 2008). "The charming case of X(3872)". Symmetry Magazine. Retrieved 2009-12-17.
  7. ^ L. Maiani; F. Piccinini; V. Riquer; A.D. Polosa (2005). "Diquark-antidiquarks with hidden or open charm and the nature of X(3872)". Physical Review D. 71 (1): 014028. arXiv: hep-ph/0412098. Bibcode: 2005PhRvD..71a4028M. doi: 10.1103/PhysRevD.71.014028. S2CID  119345314.
  8. ^ Kulshreshtha, Usha; Daya Shankar Kulshreshtha; Vary, James P. (2005). "Regge Trajectories Analysis to D
    SJ
    (2317)±, DSJ(2460)± and DSJ(2632)+ Mesons". Physical Review D. 72: 017902. arXiv: hep-ph/0408124. doi: 10.1103/PhysRevD.72.017902. S2CID  10124970.
  9. ^ G. Cotugno; R. Faccini; A.D. Polosa; C. Sabelli (2010). "Charmed Baryonium". Physical Review Letters. 104 (13): 132005. arXiv: 0911.2178. Bibcode: 2010PhRvL.104m2005C. doi: 10.1103/PhysRevLett.104.132005. PMID  20481876. S2CID  353652.
  10. ^ A. Minard (18 March 2009). "New Particle Throws Monkeywrench in Particle Physics". Universe Today. Retrieved 2014-04-12.
  11. ^ Z. Matthews (27 April 2010). "Evidence grows for tetraquarks". Physics World. Archived from the original on 2011-11-09. Retrieved 2014-04-12.
  12. ^ A. Ali; C. Hambrock; M.J. Aslam (2010). "Tetraquark Interpretation of the BELLE Data on the Anomalous Υ(1S)π+π and Υ(2S)π+π Production near the Υ(5S) Resonance". Physical Review Letters. 104 (16): 162001. arXiv: 0912.5016. Bibcode: 2010PhRvL.104p2001A. doi: 10.1103/PhysRevLett.104.162001. PMID  20482041.
  13. ^ E. Swanson (2013). "Viewpoint: New Particle Hints at Four-Quark Matter". Physics. 6: 69. Bibcode: 2013PhyOJ...6...69S. doi: 10.1103/Physics.6.69.
  14. ^ C. O'Luanaigh (9 Apr 2014). "LHCb confirms existence of exotic hadrons". CERN. Retrieved 2016-04-04.
  15. ^ R. Aaij; et al. ( LHCb collaboration) (2014). "Observation of the resonant character of the Z(4430) state". Physical Review Letters. 112 (22): 222002. arXiv: 1404.1903. Bibcode: 2014PhRvL.112v2002A. doi: 10.1103/PhysRevLett.112.222002. PMID  24949760. S2CID  904429.
  16. ^ V. M. Abazov; et al. ( D0 collaboration) (2016). "Observation of a new
    B0
    s

    π±
    state". Physical Review Letters. 117 (2): 022003. arXiv: 1602.07588. Bibcode: 2016PhRvL.117b2003A. doi: 10.1103/PhysRevLett.117.022003. PMID  27447502. S2CID  7789961.
  17. ^ Abazov, V.M.; et al. ( D0 collaboration) (2018). "Study of the X±(5568) state with semileptonic decays of the B0
    s
    meson". Physical Review D. 97 (9): 092004. arXiv: 1712.10176. Bibcode: 2018PhRvD..97i2004A. doi: 10.1103/PhysRevD.97.092004. S2CID  119337959.
  18. ^ J. van Tilburg (13 March 2016). "Recent hot results & semileptonic b hadron decay" (PDF). CERN. Retrieved 2016-04-04.
  19. ^ Sirunyan, A. M.; et al. (CMS Collaboration) (2018). "Search for the X(5568) State Decaying into B0
    s
    π± in Proton-Proton Collisions at √s =8  TeV". Physical Review Letters. 120 (20): 202005. arXiv: 1712.06144. doi: 10.1103/PhysRevLett.120.202005. PMID  29864318. S2CID  119402891.
  20. ^ Aaltonen, T.; et al. (CDF Collaboration) (2018). "A search for the exotic meson X(5568) with the Collider Detector at Fermilab". Physical Review Letters. 120 (20): 202006. arXiv: 1712.09620. Bibcode: 2018PhRvL.120t2006A. doi: 10.1103/PhysRevLett.120.202006. PMID  29864341. S2CID  43934060.
  21. ^ Aaboud, M.; et al. (ATLAS Collaboration) (2018). "Search for a Structure in the B0
    s
    π± Invariant Mass Spectrum with the ATLAS Experiment". Physical Review Letters. 120 (20): 202007. arXiv: 1802.01840. Bibcode: 2018PhRvL.120t2007A. doi: 10.1103/PhysRevLett.120.202007. PMID  29864314. S2CID  216915898.
  22. ^ Announcement by LHCb
  23. ^ R. Aaij; et al. ( LHCb collaboration) (2017). "Observation of J/ψφ structures consistent with exotic states from amplitude analysis of B+→J/ψφK+ decays". Physical Review Letters. 118 (2): 022003. arXiv: 1606.07895. Bibcode: 2017PhRvL.118b2003A. doi: 10.1103/PhysRevLett.118.022003. PMID  28128595. S2CID  206284149.
  24. ^ R. Aaij; et al. ( LHCb collaboration) (2017). "Amplitude analysis of B+→J/ψφK+ decays". Physical Review D. 95 (1): 012002. arXiv: 1606.07898. Bibcode: 2017PhRvD..95a2002A. doi: 10.1103/PhysRevD.95.012002. S2CID  73689011.
  25. ^ "Observation of a four-charm-quark tetraquark". LHCb - Large Hadron Collider beauty experiment. CERN. 1 July 2020. Retrieved 12 July 2020.
  26. ^ "ATLAS observes potential four-charm tetraquark". ATLAS. Retrieved 2022-07-21.
  27. ^ "LHCb discovers three new exotic particles". CERN. 5 July 2022. Retrieved 8 July 2022.

External links