PhotosBiographyFacebookTwitter

From Wikipedia, the free encyclopedia
Roman Dziarski
Dziarski in 2017
BornDecember 11, 1949 (1949-12-11) (age 74)
Warsaw, Poland
NationalityAmerican
Alma materUniversity of Warsaw, Poland (BS, MS) National Institute of Public Health, Warsaw, Poland (PhD)
OccupationScientist
Known forResearch on peptidoglycan recognition proteins, innate immunity, and peptidoglycan
TitleProfessor Emeritus of Microbiology and Immunology
Scientific career
FieldsImmunology, microbiology
InstitutionsIndiana University School of Medicine

Roman Dziarski (Polish pronunciation: IPA: /ˈrɔ.man//ˈd͡ʑar.ski/ born December 11, 1949) is a Polish-born American immunologist and microbiologist. [1][ unreliable source?] [2] He is best known for his research on innate immunity [3] and bacterial peptidoglycan, [4] [5] for discovering the family of human peptidoglycan recognition proteins, [6] [7] [8] which comprises PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4, and for defining the functions of these proteins. [7] [8] [9] [10] [11]

Dziarski is currently Professor Emeritus of Microbiology and Immunology at Indiana University School of Medicine. [2]

Education

From 1963 to 1967, Dziarski received his secondary education at Reytan High School (Polish: VI Liceum Ogólnokształcące im. Tadeusza Reytana) [12] in Warsaw, Poland, under the tutelage of the revered pedagogue, Ireneusz Gugulski [ pl]. From 1967 to 1972, Dziarski attended the University of Warsaw with a major in Biology and Microbiology, which he studied under Władysław Kunicki-Goldfinger [ pl]. He received his Bachelor of Sciences (BS) degree in 1971, and Master of Science (MS) degree in 1972. [1] [2] His MS Thesis was titled, Phenotypic expression of spontaneous mutations to nalidixic acid resistance in Escherichia coli K-12, with Roman Mycielski as his thesis advisor. [2] From 1972 to 1973, Dziarski studied English at West London College in London, England. [1] [2] From 1973 to 1977, Dziarski was a Research Scientist in the Department of Bacteriology at the National Institute of Public Health (Polish: Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny), Warsaw, Poland, where he performed research for his Doctor of Philosophy (Ph.D.) degree, [1] [2] which culminated in 1977 with the defense of his Ph.D. thesis, titled, Immunobiological properties of Staphylococcus aureus cell wall polysaccharides, with Janusz Jeljaszewicz as his thesis advisor. [2] In September 1977, Dziarski emigrated to the USA. [1] [2]

Academic positions

In 1977, Dziarski joined the Department of Microbiology, Immunology and Pathology at Temple University School of Podiatric Medicine in Philadelphia, Pennsylvania, USA, as a research associate and assistant professor. [2] In 1978, he was promoted to assistant professor and in 1981 to associate professor. [1] [2] In 1985, Dziarski moved to the Department of Microbiology and Immunology at Indiana University School of Medicine–Northwest, in Gary, Indiana, USA, as an associate professor and a full member of the Indiana University Graduate School, in Bloomington, Indiana, USA. In 1991, Dziarski was promoted to a Full Professor of Microbiology and Immunology with tenure. [1] [2] He held this position until his retirement in 2021, when he became Professor Emeritus of Microbiology and Immunology. [2]

Scientific contributions

Role of peptidoglycan in innate immunity

In his early research, Dziarski focused on the role of bacterial peptidoglycan in innate immunity. He showed that peptidoglycan is an immunomodulator [13] [14] [15] and a polyclonal activator of B lymphocytes. [16] [17] [18] [19] [20] [21] He determined the role of DNA synthesis, intracellular calcium, protein kinase C, and inhibitory G proteins in peptidoglycan-induced polyclonal B lymphocyte activation. [22] [23] [24] [25] He also established the role of peptidoglycan and other polyclonal B cell activators in the induction of autoantibody responses in various models of autoimmunity. [25] [26] [27] [28] [29] [30] [31] [32] [33] [34]

Peptidoglycan receptors and cell activation pathways

In his subsequent research, Dziarski set out to identify peptidoglycan receptors on immune cells that mediate the cell-activating and immunomodulating effects of peptidoglycan. His early attempts using biochemical methods were not successful, as they were prone to nonspecific interactions and technical artifacts. [35] [36] [37] [38] [39] He also showed that similar problems and artifacts plagued the early attempts to identify the cell receptors for bacterial lipopolysaccharide and other cell activators. [37] [38] [39]

The molecular biology approach to identifying the cell-activating peptidoglycan receptors was more successful. Using this approach, Dziarski and his research group, in collaboration with Dipika Gupta and her group (also at Indiana University School of Medicine), identified CD14 as the cell-activating receptor for peptidoglycan and showed that CD14 physically binds peptidoglycan. [40] [41] [42] [43] [44] [45] [46] Furthermore, Dziarski's and Gupta's groups identified the involvement of several signal transduction molecules and pathways in peptidoglycan-induced cell activation. [47] [48] [49] [50] Dziarski also established that chemokines are the main pro-inflammatory mediators in human monocytes activated by peptidoglycan and other bacterial cell activators. [51] [52] [53]

Using similar molecular biology approach the research groups of Carsten J. Kirschning (at Tularik Inc.) and Douglas Golenbock (at Boston University School of Medicine) in collaboration with Dziarski, discovered that TLR2 is the cell-activating receptor for peptidoglycan and other components of Gram-positive bacteria. [54] [55] In the follow-up studies, Dziarski's and Gupta's groups identified the signal transduction pathway activated by peptidoglycan through TLR2 and verified that TLR2 is indeed the peptidoglycan cell-activating receptor. [56] [57] [58] [59]

Discovery of peptidoglycan recognition proteins

Dziarski's best known contribution to innate immunity is his research on mammalian peptidoglycan recognition proteins (PGRPs). In 2001, Dziarski's and Gupta's groups discovered and cloned three human PGRPs, which they named PGRP-L, PGRP-Iα, and PGRP-Iβ (for long and intermediate size transcripts). [6] They established that the human genome codes for a family of 4 PGRPs: PGRP-S (short PGRP), PGRP-L, PGRP-Iα, and PGRP-Iβ. [6] Subsequently, the Human Genome Organization Gene Nomenclature Committee changed the gene symbols of PGRP-S, PGRP-L, PGRP-Iα, and PGRP-Iβ to PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4, respectively, and this nomenclature is currently also used for other mammalian PGRPs. [7] [8] [9] [10]

Dziarski and his collaborators showed that mammalian PGRPs are selectively expressed in immune and epithelial cells. [6] [60] [61] [62]

Functions of peptidoglycan recognition proteins

Dziarski and his collaborators established that all mammalian PGRPs bind bacterial peptidoglycan. [6] [60] [61] Then, they identified the functions of human PGRPs: PGLYRP2 is a peptidoglycan-lytic enzyme, N-acetylmuramoyl-L-alanine amidase, [63] [64] and PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidal for both Gram-positive and Gram-negative bacteria. [60] [61] [65]

In further research, Dziarski's group established the mechanism of bacterial killing by human PGRPs. They showed that human PGRPs kill bacteria by simultaneously inducing three synergistic stress responses: oxidative stress, thiol stress, and metal stress, by interfering with the function of the bacterial respiratory electron transport chain. [66] [67] [68] [69] [70] [71] Dziarski also showed that bacterial killing by these PGRPs does not involve cell membrane permeabilization, cell wall hydrolysis, or osmotic shock, [61] [65] [66] but is synergistic with antibacterial peptides. [65]

Cloning and functions of zebrafish peptidoglycan recognition proteins

Collaborative research of Dipika Gupta's and Dziarski's groups also identified and cloned three zebrafish PGRPs and showed that they are highly expressed in eggs, developing embryos, and adult tissues that contact the external environment. [72] They further showed that these PGRPs have both peptidoglycan-lytic amidase and bactericidal activities and are essential for defense against bacterial infections and survival of the developing zebrafish embryos. [72]

In vivo role of mammalian peptidoglycan recognition proteins

Dziarski's group also identified several in vivo functions of mammalian PGRPs. Dziarski showed that despite their bactericidal activity, mammalian PGRPs have only a limited role in defense against infections. Intranasal application of PGLYRP3 or PGLYRP4 in mice protects from intranasal lung infection with Staphylococcus aureus and Escherichia coli, [61] [73] and PGLYRP1-deficient mice are more sensitive to systemic infections with non-pathogenic bacteria ( Micrococcus luteus and Bacillus subtilis). [74]

Dziarski's group further showed that mouse PGRPs play a role in maintaining healthy microbiome, because PGLYRP1-, PGLYRP2-, PGLYRP3-, and PGLYRP4-deficient mice have significant changes in the composition of their intestinal microbiomes. [75] [76] [77] PGLYRP1-deficient mice also have changes in their lung microbiome. [77]

Dziarski's and Gupta's groups further showed that mouse PGRPs play a role in maintaining anti- and pro- inflammatory homeostasis in the intestine, skin, lungs, and joints. [8] [10] They demonstrated that all four PGLYRPs protect mice from dextran sodium sulfate (DSS)-induced colitis and the effect of PGLYRP2 and PGLYRP3 on the intestinal microbiome is responsible for this protection. [75] [76] [78] They showed that PGLYRP3 and PGLYRP4 are anti-inflammatory and protect mice from experimentally induced atopic dermatitis, [79] and PGLYRP2 is also anti-inflammatory and protects mice from experimentally induced psoriasis-like inflammation. [80] They also showed that some PGRPs have opposite effects, i.e., PGLYRP2 also has a pro-inflammatory effect, as it promotes the development of experimental arthritis, [81] and PGLYRP1 is pro-inflammatory and promotes experimentally induced asthma [82] and skin inflammation [79] [80] in mice. The pro-inflammatory effect of PGLYRP1 on asthma depends on the PGLYRP1-regulated intestinal microbiome. [77]

Disease associations of peptidoglycan recognition proteins

In collaborative research, Dipika Gupta's and Dziarski's groups showed that patients with two forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis, have significantly more frequent missense variants in all four PGLYRP genes than healthy control individuals. [83] These results suggest that PGRPs may protect humans from these inflammatory diseases, and that mutations in PGLYRP genes may be among the genetic factors predisposing to these diseases. [83]

Publications and research support

Dziarski authored over 150 scientific publications, which have over 14,000 citations, h-index of 49, and i10-index of 90. [84] From 1979 to 2020, Dziarski was a Principal Investigator on more than 20 research grants, including 10 awards from the National Institutes of Health. [2]

Teaching

Dziarski is a dedicated educator. From 1978 to 1984, he taught Immunology and Microbiology to podiatric medicine students at Temple University School of Podiatric Medicine. [2] From 1985 to 2020, he taught Immunology, Microbiology, and elements of Pathology and Pharmacology to medical students at Indiana University School of Medicine–Northwest. [2] He was a Course Director of Microbiology and Immunology, and in 1990 introduced an innovative Problem-Based Learning curriculum. [2] He authored a chapter on Innate Immunity, published in three editions of the popular medical textbook, Schaechter’s Mechanisms of Microbial Disease, [3] [85] [86] and a chapter on peptidoglycan in Molecular Medical Microbiology textbook. [5] Dziarski received seven Teaching Awards at Indiana University. [2]

World War II book

In 2023 Dziarski published a World War II family memoir, “How We Outwitted and Survived the Nazis: The True Story of the Holocaust Rescuers, Zofia Sterner and Her Family”, [87] which received positive reviews. [88] [89]

Awards and honors

  • Stanford University List of World’s Top 2% Scientists, ranked in the top 0.71% of world’s scientists (2023) [90] [91]
  • Indiana University Trustees’ Teaching Awards (2001, 2012, and 2018) [2]
  • Indiana University School of Medicine Class of 2016 Faculty Teaching Award (2016) [2]
  • Indiana University Outstanding Educator (2012, 2013, and 2014) [2]
  • Innovation Fellow Award from the Society of Innovators, sponsored by Ivy Tech State College in Indiana (2007) [2]
  • Joseph A. Negri Trust Award and Dedication of the Laboratory (2006) [2]
  • Indiana University School of Medicine Eminent Scholar (1998 – 1999) [2]
  • Editorial Board of Infection and Immunity, the official journal of the American Society for Microbiology (1982 – 2020) [2]
  • Editorial Board of Current Immunology Reviews (2004 – 2020) [2]
  • Member of the American Association of Immunologists and Federation of American Societies for Experimental Biology (1982 – 2020) [2]
  • Member of the American Society for Microbiology (1978 – 2020) [2]
  • Dean's Award to the Best Graduating Student at the Faculty of Biology, University of Warsaw, Poland (1971) [2]

Family

Dziarski's mother (Janina Dziarska, née Domańska) and father (Kazimierz W. Dziarski) were both dentists in Warsaw, Poland. [1] Dziarski was married to Agnes Dziarski (née Rewkiewicz), a dentist, from 1971 to 1994. [1] In 1996, Dziarski married Dipika Gupta, a biochemist and molecular biologist at Indiana University School of Medicine. [92] Dziarski has three children: Matthew Dziarski, Alisha Dziarski, and Anjali Dziarski.

See also

References

  1. ^ a b c d e f g h i "Roman Dziarski".
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab "Roman Dziarski, PhD".
  3. ^ a b Schaechter's mechanisms of microbial disease. N. Cary Engleberg, Victor J. DiRita, Michael Joseph Imperiale (Sixth ed.). Philadelphia. 2022. pp. 61–86. ISBN  978-1-9751-5150-8. OCLC  1266208905.{{ cite book}}: CS1 maint: location missing publisher ( link) CS1 maint: others ( link)
  4. ^ Rosenthal, Raoul S.; Dziarski, Roman (1994), "Isolation of peptidoglycan and soluble peptidoglycan fragments", Bacterial Pathogenesis Part A: Identification and Regulation of Virulence Factors, Methods in Enzymology, vol. 235, Elsevier, pp. 253–285, doi: 10.1016/0076-6879(94)35146-5, ISBN  978-0-12-182136-4, PMID  8057899, retrieved 2022-02-01
  5. ^ a b Molecular medical microbiology. Max Sussman. San Diego: Academic Press. 2002. pp. 137–154. ISBN  978-0-12-677530-3. OCLC  162129494.{{ cite book}}: CS1 maint: others ( link)
  6. ^ a b c d e Liu, C.; Xu, Z.; Gupta, D.; Dziarski, R. (2001-09-14). "Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules". The Journal of Biological Chemistry. 276 (37): 34686–34694. doi: 10.1074/jbc.M105566200. ISSN  0021-9258. PMID  11461926.
  7. ^ a b c Dziarski, Roman; Gupta, Dipika (2006). "The peptidoglycan recognition proteins (PGRPs)". Genome Biology. 7 (8): 232. doi: 10.1186/gb-2006-7-8-232. ISSN  1465-6906. PMC  1779587. PMID  16930467.
  8. ^ a b c d Dziarski, Roman; Royet, Julien; Gupta, Dipika (2016), "Peptidoglycan Recognition Proteins and Lysozyme", Encyclopedia of Immunobiology, Elsevier, pp. 389–403, doi: 10.1016/b978-0-12-374279-7.02022-1, ISBN  978-0-08-092152-5, retrieved 2022-02-01
  9. ^ a b Royet, Julien; Dziarski, Roman (Apr 2007). "Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences". Nature Reviews. Microbiology. 5 (4): 264–277. doi: 10.1038/nrmicro1620. ISSN  1740-1534. PMID  17363965. S2CID  39569790.
  10. ^ a b c Royet, Julien; Gupta, Dipika; Dziarski, Roman (2011-11-11). "Peptidoglycan recognition proteins: modulators of the microbiome and inflammation". Nature Reviews. Immunology. 11 (12): 837–851. doi: 10.1038/nri3089. ISSN  1474-1741. PMID  22076558. S2CID  5266193.
  11. ^ Dziarski, Roman; Gupta, Dipika (Feb 2018). "How innate immunity proteins kill bacteria and why they are not prone to resistance". Current Genetics. 64 (1): 125–129. doi: 10.1007/s00294-017-0737-0. ISSN  1432-0983. PMC  5777906. PMID  28840318.
  12. ^ "VI Liceum Ogólnokształcące im. Tadeusza Reytana w Warszawie".
  13. ^ Dziarski, R. (1978). "Immunosuppressive effect of Staphylococcus aureus peptidoglycan on antibody response in mice". International Archives of Allergy and Applied Immunology. 57 (4): 304–311. doi: 10.1159/000232119. ISSN  0020-5915. PMID  659018.
  14. ^ Dziarski, R. (Sep 1979). "Splenic macrophages: mediators of immunosuppressive activity of staphylococcal peptidoglycan". Journal of the Reticuloendothelial Society. 26 (3): 239–247. ISSN  0033-6890. PMID  501708.
  15. ^ Dziarski, R. (Nov 1979). "Relationships between adjuvant, immunosuppressive, and mitogenic activities of staphylococcal peptidoglycan". Infection and Immunity. 26 (2): 508–514. doi: 10.1128/iai.26.2.508-514.1979. ISSN  0019-9567. PMC  414645. PMID  317594.
  16. ^ Dziarski, R.; Dziarski, A. (Mar 1979). "Mitogenic activity of staphylococcal peptidoglycan". Infection and Immunity. 23 (3): 706–710. doi: 10.1128/iai.23.3.706-710.1979. ISSN  0019-9567. PMC  414223. PMID  313370.
  17. ^ Dziarski, R. (Nov 1980). "Modulation of mitogenic responsiveness by staphylococcal peptidoglycan". Infection and Immunity. 30 (2): 431–438. doi: 10.1128/iai.30.2.431-438.1980. ISSN  0019-9567. PMC  551331. PMID  7439988.
  18. ^ Dziarski, R.; Dziarski, A.; Levinson, A. I. (1980). "Mitogenic responsiveness of mouse, rat and human lymphocytes to Staphylococcus aureus cell wall, teichoic acid, and peptidoglycan". International Archives of Allergy and Applied Immunology. 63 (4): 383–395. doi: 10.1159/000232654. ISSN  0020-5915. PMID  7429652.
  19. ^ Dziarski, R. (Dec 1980). "Polyclonal activation of immunoglobulin secretion in B lymphocytes induced by staphylococcal peptidoglycan". Journal of Immunology. 125 (6): 2478–2483. doi: 10.4049/jimmunol.125.6.2478. ISSN  0022-1767. PMID  6968784. S2CID  10056237.
  20. ^ Dziarski, R. (Feb 1982). "Studies on the mechanism of peptidoglycan- and lipopolysaccharide-induced polyclonal activation". Infection and Immunity. 35 (2): 507–514. doi: 10.1128/iai.35.2.507-514.1982. ISSN  0019-9567. PMC  351069. PMID  6460001.
  21. ^ Levinson, A. I.; Dziarski, A.; Zweiman, B.; Dziarski, R. (Jan 1983). "Staphylococcal peptidoglycan: T-cell-dependent mitogen and relatively T-cell-independent polyclonal B-cell activator of human lymphocytes". Infection and Immunity. 39 (1): 290–296. doi: 10.1128/iai.39.1.290-296.1983. ISSN  0019-9567. PMC  347939. PMID  6600446.
  22. ^ Dziarski, R. (1985). "The role of DNA synthesis in peptidoglycan-induced generation of immunoglobulin-secreting cells in mice and humans". Immunology Letters. 9 (2–3): 161–165. doi: 10.1016/0165-2478(85)90028-8. ISSN  0165-2478. PMID  4039298.
  23. ^ Dziarski, R. (Jan 1988). "Enhancement of B-cell stimulation by muramyl dipeptide through a mechanism not involving interleukin 1 or increased Ca2+ mobilization or protein kinase C activation". Cellular Immunology. 111 (1): 10–27. doi: 10.1016/0008-8749(88)90047-0. ISSN  0008-8749. PMID  2448043.
  24. ^ Dziarski, R. (Jan 1989). "Correlation between ribosylation of pertussis toxin substrates and inhibition of peptidoglycan-, muramyl dipeptide- and lipopolysaccharide-induced mitogenic stimulation in B lymphocytes". European Journal of Immunology. 19 (1): 125–130. doi: 10.1002/eji.1830190120. ISSN  0014-2980. PMID  2537732. S2CID  25447041.
  25. ^ a b Biological Properties of Peptidoglycan : Proceedings Second International Workshop, Munich, Federal Republic of Germany, May 20-21, 1985. Karl H. Schleifer, Peter H. Seidl (Reprint 2019 ed.). Berlin. 2019. pp. 229–247. ISBN  978-3-11-087429-7. OCLC  1167631600.{{ cite book}}: CS1 maint: location missing publisher ( link) CS1 maint: others ( link)
  26. ^ Dziarski, R. (Mar 1982). "Preferential induction of autoantibody secretion in polyclonal activation by peptidoglycan and lipopolysaccharide. I. In vitro studies". Journal of Immunology. 128 (3): 1018–1025. doi: 10.4049/jimmunol.128.3.1018. ISSN  0022-1767. PMID  7035553. S2CID  6804886.
  27. ^ Dziarski, R. (Mar 1982). "Preferential induction of autoantibody secretion in polyclonal activation by peptidoglycan and lipopolysaccharide. II. In vivo studies". Journal of Immunology. 128 (3): 1026–1030. doi: 10.4049/jimmunol.128.3.1026. ISSN  0022-1767. PMID  7035554. S2CID  41066567.
  28. ^ Dziarski, R. (Nov 1984). "Anti-immunoglobulin autoantibodies are not preferentially induced in polyclonal activation of human and mouse lymphocytes, and more anti-DNA and anti-erythrocyte autoantibodies are induced in polyclonal activation of mouse than human lymphocytes". Journal of Immunology. 133 (5): 2537–2544. doi: 10.4049/jimmunol.133.5.2537. ISSN  0022-1767. PMID  6207235. S2CID  21332031.
  29. ^ Dziarski, R. (Nov 1984). "Opposing effects of xid and nu mutations on proliferative and polyclonal antibody and autoantibody responses to peptidoglycan, LPS, protein A and PWM". Immunology. 53 (3): 563–574. ISSN  0019-2805. PMC  1454924. PMID  6436173.
  30. ^ Dziarski, R. (Feb 1985). "Comparison of in vitro and in vivo mitogenic and polyclonal antibody and autoantibody responses to peptidoglycan, LPS, protein A, PWM, PHA and Con A in normal and autoimmune mice". Journal of Clinical & Laboratory Immunology. 16 (2): 93–109. ISSN  0141-2760. PMID  3886911.
  31. ^ Dziarski, R. (1985). "Ontogenic development of proliferative and polyclonal antibody and autoantibody responses to staphylococcal peptidoglycan, protein A and cell walls in mice". Developmental and Comparative Immunology. 9 (1): 119–130. doi: 10.1016/0145-305x(85)90065-5. ISSN  0145-305X. PMID  4039689.
  32. ^ Dziarski, Roman (Jun 1985). "Polyclonal B-cell activation in SLE: Frequencies of autoantibody secreting cells". Clinical Immunology Newsletter. 6 (6): 89–93. doi: 10.1016/S0197-1859(85)80027-3.
  33. ^ Dziarski, R. (1987). "Letters Natural autoantibodies might prevent autoimmune disease". Immunology Today. 8 (5): 132. doi: 10.1016/0167-5699(87)90138-1. ISSN  0167-5699. PMID  25290022.
  34. ^ Dziarski, R. (Nov 1988). "Autoimmunity: polyclonal activation or antigen induction?". Immunology Today. 9 (11): 340–342. doi: 10.1016/0167-5699(88)91333-3. ISSN  0167-5699. PMID  3076403.
  35. ^ Dziarski, R. (1987-10-01). "Binding sites for peptidoglycan on mouse lymphocytes". Cellular Immunology. 109 (1): 231–245. doi: 10.1016/0008-8749(87)90307-8. ISSN  0008-8749. PMID  2820589.
  36. ^ Dziarski, R. (1991-03-15). "Demonstration of peptidoglycan-binding sites on lymphocytes and macrophages by photoaffinity cross-linking". The Journal of Biological Chemistry. 266 (8): 4713–4718. doi: 10.1016/S0021-9258(19)67707-0. ISSN  0021-9258. PMID  2002020.
  37. ^ a b Dziarski, R. (1991-03-15). "Peptidoglycan and lipopolysaccharide bind to the same binding site on lymphocytes". The Journal of Biological Chemistry. 266 (8): 4719–4725. doi: 10.1016/S0021-9258(19)67708-2. ISSN  0021-9258. PMID  2002021.
  38. ^ a b Dziarski, R.; Gupta, D. (1994-01-21). "Heparin, sulfated heparinoids, and lipoteichoic acids bind to the 70-kDa peptidoglycan/lipopolysaccharide receptor protein on lymphocytes". The Journal of Biological Chemistry. 269 (3): 2100–2110. doi: 10.1016/S0021-9258(17)42141-7. ISSN  0021-9258. PMID  8294463.
  39. ^ a b Dziarski, R. (1994-08-12). "Cell-bound albumin is the 70-kDa peptidoglycan-, lipopolysaccharide-, and lipoteichoic acid-binding protein on lymphocytes and macrophages". The Journal of Biological Chemistry. 269 (32): 20431–20436. doi: 10.1016/S0021-9258(17)32010-0. ISSN  0021-9258. PMID  8051139.
  40. ^ Gupta, D.; Kirkland, T. N.; Viriyakosol, S.; Dziarski, R. (1996-09-20). "CD14 is a cell-activating receptor for bacterial peptidoglycan". The Journal of Biological Chemistry. 271 (38): 23310–23316. doi: 10.1074/jbc.271.38.23310. ISSN  0021-9258. PMID  8798531.
  41. ^ Dziarski, R.; Tapping, R. I.; Tobias, P. S. (1998-04-10). "Binding of bacterial peptidoglycan to CD14". The Journal of Biological Chemistry. 273 (15): 8680–8690. doi: 10.1074/jbc.273.15.8680. ISSN  0021-9258. PMID  9535844.
  42. ^ Jin, Y.; Gupta, D.; Dziarski, R. (Jun 1998). "Endothelial and epithelial cells do not respond to complexes of peptidoglycan with soluble CD14 but are activated indirectly by peptidoglycan-induced tumor necrosis factor-alpha and interleukin-1 from monocytes". The Journal of Infectious Diseases. 177 (6): 1629–1638. doi: 10.1086/515318. ISSN  0022-1899. PMID  9607843. S2CID  42163402.
  43. ^ Dziarski, R.; Viriyakosol, S.; Kirkland, T. N.; Gupta, D. (Sep 2000). "Soluble CD14 enhances membrane CD14-mediated responses to peptidoglycan: structural requirements differ from those for responses to lipopolysaccharide". Infection and Immunity. 68 (9): 5254–5260. doi: 10.1128/IAI.68.9.5254-5260.2000. ISSN  0019-9567. PMC  101786. PMID  10948152.
  44. ^ Dziarski, Roman; Gupta, Dipika (Feb 1999). "Function of CD14 as a peptidoglycan receptor: differences and similarities with LPS". Journal of Endotoxin Research. 5 (1–2): 56–61. doi: 10.1177/09680519990050010201. ISSN  0968-0519. S2CID  85796229.
  45. ^ Dziarski, R.; Ulmer, A.J.; Gupta, D. (1999), Jack, R.S. (ed.), "Interactions of CD14 with Components of Gram-Positive Bacteria", Chemical Immunology and Allergy, vol. 74, Basel: KARGER, pp. 83–107, doi: 10.1159/000058761, ISBN  978-3-8055-6917-0, PMID  10608083, retrieved 2022-02-01
  46. ^ Glycomicrobiology. Ronald J. Doyle. New York: Kluwer Academic/Plenum Publishers. 2000. pp. 145–186. ISBN  0-306-46821-2. OCLC  559648508.{{ cite book}}: CS1 maint: others ( link)
  47. ^ Gupta, D.; Jin, Y. P.; Dziarski, R. (1995-09-01). "Peptidoglycan induces transcription and secretion of TNF-alpha and activation of lyn, extracellular signal-regulated kinase, and rsk signal transduction proteins in mouse macrophages". Journal of Immunology. 155 (5): 2620–2630. doi: 10.4049/jimmunol.155.5.2620. ISSN  0022-1767. PMID  7650392. S2CID  45885283.
  48. ^ Dziarski, R.; Jin, Y. P.; Gupta, D. (Oct 1996). "Differential activation of extracellular signal-regulated kinase (ERK) 1, ERK2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan". The Journal of Infectious Diseases. 174 (4): 777–785. doi: 10.1093/infdis/174.4.777. ISSN  0022-1899. PMID  8843216.
  49. ^ Gupta, D.; Wang, Q.; Vinson, C.; Dziarski, R. (1999-05-14). "Bacterial peptidoglycan induces CD14-dependent activation of transcription factors CREB/ATF and AP-1". The Journal of Biological Chemistry. 274 (20): 14012–14020. doi: 10.1074/jbc.274.20.14012. ISSN  0021-9258. PMID  10318814.
  50. ^ Xu, Z.; Dziarski, R.; Wang, Q.; Swartz, K.; Sakamoto, K. M.; Gupta, D. (2001-12-15). "Bacterial peptidoglycan-induced tnf-alpha transcription is mediated through the transcription factors Egr-1, Elk-1, and NF-kappaB". Journal of Immunology. 167 (12): 6975–6982. doi: 10.4049/jimmunol.167.12.6975. ISSN  0022-1767. PMID  11739517. S2CID  83509463.
  51. ^ Wang, Z. M.; Liu, C.; Dziarski, R. (2000-07-07). "Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin". The Journal of Biological Chemistry. 275 (27): 20260–20267. doi: 10.1074/jbc.M909168199. ISSN  0021-9258. PMID  10751418.
  52. ^ Wang, Zheng-Ming; Dziarski, Roman (2001-07-19), "Measurement of Cytokine and Chemokine mRNA Using Nonisotopic Multiprobe RNase Protection Assay", Interleukin Protocols, vol. 60, New Jersey: Humana Press, pp. 125–143, doi: 10.1385/1-59259-146-9:125, ISBN  978-1-59259-146-6, retrieved 2022-02-01
  53. ^ Wang, Zheng-Ming; Dziarski, Roman (2001-07-19), "Measurement of Cytokine and Chemokine Gene Expression Patterns Using cDNA Array", Interleukin Protocols, vol. 60, New Jersey: Humana Press, pp. 419–438, doi: 10.1385/1-59259-146-9:419, ISBN  978-1-59259-146-6, retrieved 2022-02-01
  54. ^ Schwandner, R.; Dziarski, R.; Wesche, H.; Rothe, M.; Kirschning, C. J. (1999-06-18). "Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2". The Journal of Biological Chemistry. 274 (25): 17406–17409. doi: 10.1074/jbc.274.25.17406. ISSN  0021-9258. PMID  10364168.
  55. ^ Yoshimura, A.; Lien, E.; Ingalls, R. R.; Tuomanen, E.; Dziarski, R.; Golenbock, D. (1999-07-01). "Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2". Journal of Immunology. 163 (1): 1–5. doi: 10.4049/jimmunol.163.1.1. ISSN  0022-1767. PMID  10384090.
  56. ^ Dziarski, Roman; Wang, Qiuling; Miyake, Kensuke; Kirschning, Carsten J.; Gupta, Dipika (2001-02-01). "MD-2 Enables Toll-Like Receptor 2 (TLR2)-Mediated Responses to Lipopolysaccharide and Enhances TLR2-Mediated Responses to Gram-Positive and Gram-Negative Bacteria and Their Cell Wall Components". The Journal of Immunology. 166 (3): 1938–1944. doi: 10.4049/jimmunol.166.3.1938. ISSN  0022-1767. PMID  11160242. S2CID  41216073.
  57. ^ Wang, Qiuling; Dziarski, Roman; Kirschning, Carsten J.; Muzio, Marta; Gupta, Dipika (Apr 2001). Moore, R. N. (ed.). "Micrococci and Peptidoglycan Activate TLR2→MyD88→IRAK→TRAF→NIK→IKK→NF-κB Signal Transduction Pathway That Induces Transcription of Interleukin-8". Infection and Immunity. 69 (4): 2270–2276. doi: 10.1128/IAI.69.4.2270-2276.2001. ISSN  0019-9567. PMC  98155. PMID  11254583.
  58. ^ Dziarski, Roman; Gupta, Dipika (Aug 2005). "Staphylococcus aureus Peptidoglycan Is a Toll-Like Receptor 2 Activator: a Reevaluation". Infection and Immunity. 73 (8): 5212–5216. doi: 10.1128/IAI.73.8.5212-5216.2005. ISSN  0019-9567. PMC  1201261. PMID  16041042.
  59. ^ Dziarski, R.; Gupta, D. (2000-05-01). "Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes". Journal of Endotoxin Research. 6 (5): 401–405. doi: 10.1179/096805100101532243. PMID  11521063.
  60. ^ a b c Liu, Chao; Gelius, Eva; Liu, Gang; Steiner, Håkan; Dziarski, Roman (Aug 2000). "Mammalian Peptidoglycan Recognition Protein Binds Peptidoglycan with High Affinity, Is Expressed in Neutrophils, and Inhibits Bacterial Growth". Journal of Biological Chemistry. 275 (32): 24490–24499. doi: 10.1074/jbc.M001239200. PMID  10827080.
  61. ^ a b c d e Lu, Xiaofeng; Wang, Minhui; Qi, Jin; Wang, Haitao; Li, Xinna; Gupta, Dipika; Dziarski, Roman (Mar 2006). "Peptidoglycan Recognition Proteins Are a New Class of Human Bactericidal Proteins". Journal of Biological Chemistry. 281 (9): 5895–5907. doi: 10.1074/jbc.M511631200. PMID  16354652.
  62. ^ Wang, Haitao; Gupta, Dipika; Li, Xinna; Dziarski, Roman (Nov 2005). "Peptidoglycan Recognition Protein 2 ( N -Acetylmuramoyl- l -Ala Amidase) Is Induced in Keratinocytes by Bacteria through the p38 Kinase Pathway". Infection and Immunity. 73 (11): 7216–7225. doi: 10.1128/IAI.73.11.7216-7225.2005. ISSN  0019-9567. PMC  1273900. PMID  16239516.
  63. ^ Wang, Zheng-Ming; Li, Xinna; Cocklin, Ross R.; Wang, Minhui; Wang, Mu; Fukase, Koichi; Inamura, Seiichi; Kusumoto, Shoichi; Gupta, Dipika; Dziarski, Roman (Dec 2003). "Human Peptidoglycan Recognition Protein-L Is an N-Acetylmuramoyl-L-alanine Amidase". Journal of Biological Chemistry. 278 (49): 49044–49052. doi: 10.1074/jbc.M307758200. PMID  14506276.
  64. ^ Zhang, Yinong; van der Fits, Leslie; Voerman, Jane S.; Melief, Marie-Jose; Laman, Jon D.; Wang, Mu; Wang, Haitao; Wang, Minhui; Li, Xinna; Walls, Chad D.; Gupta, Dipika (Aug 2005). "Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1752 (1): 34–46. doi: 10.1016/j.bbapap.2005.07.001. PMID  16054449.
  65. ^ a b c Wang, Minhui; Liu, Li-Hui; Wang, Shiyong; Li, Xinna; Lu, Xiaofeng; Gupta, Dipika; Dziarski, Roman (2007-03-01). "Human Peptidoglycan Recognition Proteins Require Zinc to Kill Both Gram-Positive and Gram-Negative Bacteria and Are Synergistic with Antibacterial Peptides". The Journal of Immunology. 178 (5): 3116–3125. doi: 10.4049/jimmunol.178.5.3116. ISSN  0022-1767. PMID  17312159. S2CID  22160694.
  66. ^ a b Kashyap, Des Raj; Wang, Minhui; Liu, Li-Hui; Boons, Geert-Jan; Gupta, Dipika; Dziarski, Roman (Jun 2011). "Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems". Nature Medicine. 17 (6): 676–683. doi: 10.1038/nm.2357. ISSN  1078-8956. PMC  3176504. PMID  21602801.
  67. ^ Kashyap, Des Raj; Rompca, Annemarie; Gaballa, Ahmed; Helmann, John D.; Chan, Jefferson; Chang, Christopher J.; Hozo, Iztok; Gupta, Dipika; Dziarski, Roman (2014-07-17). Philpott, Dana J. (ed.). "Peptidoglycan Recognition Proteins Kill Bacteria by Inducing Oxidative, Thiol, and Metal Stress". PLOS Pathogens. 10 (7): e1004280. doi: 10.1371/journal.ppat.1004280. ISSN  1553-7374. PMC  4102600. PMID  25032698.
  68. ^ Kashyap, Des R.; Kuzma, Marcin; Kowalczyk, Dominik A.; Gupta, Dipika; Dziarski, Roman (Sep 2017). "Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism: E. coli killing by peptidoglycan recognition protein". Molecular Microbiology. 105 (5): 755–776. doi: 10.1111/mmi.13733. PMC  5570643. PMID  28621879.
  69. ^ Dziarski, Roman; Gupta, Dipika (Feb 2018). "How innate immunity proteins kill bacteria and why they are not prone to resistance". Current Genetics. 64 (1): 125–129. doi: 10.1007/s00294-017-0737-0. ISSN  0172-8083. PMC  5777906. PMID  28840318.
  70. ^ Kashyap, Des R.; Kowalczyk, Dominik A.; Shan, Yue; Yang, Chun-Kai; Gupta, Dipika; Dziarski, Roman (Dec 2020). "Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in Escherichia coli". Scientific Reports. 10 (1): 1993. Bibcode: 2020NatSR..10.1993K. doi: 10.1038/s41598-020-58302-1. ISSN  2045-2322. PMC  7005000. PMID  32029761.
  71. ^ Yang, Chun-Kai; Kashyap, Des R.; Kowalczyk, Dominik A.; Rudner, David Z.; Wang, Xindan; Gupta, Dipika; Dziarski, Roman (Dec 2021). "Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli". Scientific Reports. 11 (1): 64. doi: 10.1038/s41598-020-79811-z. ISSN  2045-2322. PMC  7794252. PMID  33420211.
  72. ^ a b Li, Xinna; Wang, Shiyong; Qi, Jin; Echtenkamp, Stephen F.; Chatterjee, Rohini; Wang, Mu; Boons, Geert-Jan; Dziarski, Roman; Gupta, Dipika (Sep 2007). "Zebrafish Peptidoglycan Recognition Proteins Are Bactericidal Amidases Essential for Defense against Bacterial Infections". Immunity. 27 (3): 518–529. doi: 10.1016/j.immuni.2007.07.020. PMC  2074879. PMID  17892854.
  73. ^ Dziarski, Roman; Kashyap, Des Raj; Gupta, Dipika (2012-06-01). "Mammalian Peptidoglycan Recognition Proteins Kill Bacteria by Activating Two-Component Systems and Modulate Microbiome and Inflammation". Microbial Drug Resistance. 18 (3): 280–285. doi: 10.1089/mdr.2012.0002. ISSN  1076-6294. PMC  3412580. PMID  22432705.
  74. ^ Dziarski, Roman; Platt, Kenneth A.; Gelius, Eva; Steiner, Håkan; Gupta, Dipika (2003-07-15). "Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)–deficient mice". Blood. 102 (2): 689–697. doi: 10.1182/blood-2002-12-3853. ISSN  0006-4971. PMID  12649138.
  75. ^ a b Saha, Sukumar; Jing, Xuefang; Park, Shin Yong; Wang, Shiyong; Li, Xinna; Gupta, Dipika; Dziarski, Roman (Aug 2010). "Peptidoglycan Recognition Proteins Protect Mice from Experimental Colitis by Promoting Normal Gut Flora and Preventing Induction of Interferon-γ". Cell Host & Microbe. 8 (2): 147–162. doi: 10.1016/j.chom.2010.07.005. PMC  2998413. PMID  20709292.
  76. ^ a b Dziarski, Roman; Park, Shin Yong; Kashyap, Des Raj; Dowd, Scot E.; Gupta, Dipika (2016-01-04). Mizoguchi, Emiko (ed.). "Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice". PLOS ONE. 11 (1): e0146162. Bibcode: 2016PLoSO..1146162D. doi: 10.1371/journal.pone.0146162. ISSN  1932-6203. PMC  4699708. PMID  26727498.
  77. ^ a b c Banskar, Sunil; Detzner, Ashley A.; Juarez-Rodriguez, Maria D.; Hozo, Iztok; Gupta, Dipika; Dziarski, Roman (2019-12-15). "The Pglyrp1 -Regulated Microbiome Enhances Experimental Allergic Asthma". The Journal of Immunology. 203 (12): 3113–3125. doi: 10.4049/jimmunol.1900711. ISSN  0022-1767. PMID  31704882. S2CID  207942798.
  78. ^ Jing, Xuefang; Zulfiqar, Fareeha; Park, Shin Yong; Núñez, Gabriel; Dziarski, Roman; Gupta, Dipika (2014-09-15). "Peptidoglycan Recognition Protein 3 and Nod2 Synergistically Protect Mice from Dextran Sodium Sulfate–Induced Colitis". The Journal of Immunology. 193 (6): 3055–3069. doi: 10.4049/jimmunol.1301548. ISSN  0022-1767. PMC  4157132. PMID  25114103.
  79. ^ a b Park, Shin Yong; Gupta, Dipika; Kim, Chang H.; Dziarski, Roman (2011-09-16). Jeyaseelan, Samithamby (ed.). "Differential Effects of Peptidoglycan Recognition Proteins on Experimental Atopic and Contact Dermatitis Mediated by Treg and Th17 Cells". PLOS ONE. 6 (9): e24961. Bibcode: 2011PLoSO...624961P. doi: 10.1371/journal.pone.0024961. ISSN  1932-6203. PMC  3174980. PMID  21949809.
  80. ^ a b Park, Shin Yong; Gupta, Dipika; Hurwich, Risa; Kim, Chang H.; Dziarski, Roman (2011-12-01). "Peptidoglycan Recognition Protein Pglyrp2 Protects Mice from Psoriasis-like Skin Inflammation by Promoting Regulatory T Cells and Limiting Th17 Responses". The Journal of Immunology. 187 (11): 5813–5823. doi: 10.4049/jimmunol.1101068. ISSN  0022-1767. PMC  3221838. PMID  22048773.
  81. ^ Saha, Sukumar; Qi, Jin; Wang, Shiyong; Wang, Minhui; Li, Xinna; Kim, Yun-Gi; Núñez, Gabriel; Gupta, Dipika; Dziarski, Roman (Feb 2009). "PGLYRP-2 and Nod2 Are Both Required for Peptidoglycan-Induced Arthritis and Local Inflammation". Cell Host & Microbe. 5 (2): 137–150. doi: 10.1016/j.chom.2008.12.010. PMC  2671207. PMID  19218085.
  82. ^ Park, Shin Yong; Jing, Xuefang; Gupta, Dipika; Dziarski, Roman (2013-04-01). "Peptidoglycan Recognition Protein 1 Enhances Experimental Asthma by Promoting Th2 and Th17 and Limiting Regulatory T Cell and Plasmacytoid Dendritic Cell Responses". The Journal of Immunology. 190 (7): 3480–3492. doi: 10.4049/jimmunol.1202675. ISSN  0022-1767. PMC  3608703. PMID  23420883.
  83. ^ a b Zulfiqar, Fareeha; Hozo, Iztok; Rangarajan, Sneha; Mariuzza, Roy A.; Dziarski, Roman; Gupta, Dipika (2013-06-19). Lenz, Laurel L. (ed.). "Genetic Association of Peptidoglycan Recognition Protein Variants with Inflammatory Bowel Disease". PLOS ONE. 8 (6): e67393. Bibcode: 2013PLoSO...867393Z. doi: 10.1371/journal.pone.0067393. ISSN  1932-6203. PMC  3686734. PMID  23840689.
  84. ^ "Google Scholar, Roman Dziarski".
  85. ^ Schaechter's mechanisms of microbial disease. Moselio Schaechter, N. Cary Engleberg, Victor J. DiRita, Terence Dermody (5th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. 2013. pp. 66–90. ISBN  978-0-7817-8744-4. OCLC  769141612.{{ cite book}}: CS1 maint: others ( link)
  86. ^ Schaechter's mechanisms of microbial disease. Moselio Schaechter, Cary Engleberg, Victor J. DiRita, Terence Dermody (4th ed.). Philadelphia, PA: Lippincott Williams & Wilkins. 2007. pp. 66–89. ISBN  978-0-7817-5342-5. OCLC  62342789.{{ cite book}}: CS1 maint: others ( link)
  87. ^ Dziarski, Roman (2023). How We Outwitted and Survived the Nazis: The True Story of the Holocaust Rescuers, Zofia Sterner and Her Family. Boston, MA: Academic Studies Press. ISBN  9798887191980.
  88. ^ "How We Outwitted and Survived the Nazis: The True Story of the Holocaust Rescuers, Zofia Sterner and Her Family by Roman Dziarski". www.publishersweekly.com. Retrieved 2023-12-25.
  89. ^ "Library Journal". www.libraryjournal.com. Retrieved 2023-12-25.
  90. ^ "Stanford University Names World's Top 2% Scientists, 2023". October 4, 2023.
  91. ^ "ICSR Lab | Elsevier". www.elsevier.com. Retrieved 2023-12-01.
  92. ^ "Dipika Gupta, PhD".