RX J2129.7+0005 BCG - Wikipedia Jump to content

RX J2129.7+0005 BCG

From Wikipedia, the free encyclopedia
RX J2129.7+0005 BCG
RX J2129.7+0005 BCG, as seen by DESI Legacy Surveys
Observation data (J2000.0 epoch)
ConstellationAquarius
Right ascension21h 29m 39.958s
Declination+00d 05m 21.14s
Redshift0.233926
Heliocentric radial velocity70,129 km/s
Distance3.119 Gly (956.3 Mpc)
Group or clusterRX J2129.7+0005
Apparent magnitude (V)0.111
Apparent magnitude (B)0.146
Surface brightness18.1
Characteristics
TypeBrCLG
Size515,000 ly
Apparent size (V)0.32' x 0.16'
Notable featuresbrightest cluster galaxy in a gravitational lensed cluster
Other designations
OGC 98, NVSS J212939+000523, PGC 1156801, 2MASS J21293997+0005213, FIRST J212939.9+000521, 2CXO J212939.9+000520

RX J2129.7+0005 BCG (short for RX J2129.7+0005 Brightest Cluster Galaxy) also known as PGC 1156801, is a massive elliptical galaxy residing as the brightest cluster galaxy (BCG) of the RX J2129.7+0005 galaxy cluster.[1] It is located in the constellation of Aquarius and a redshift of 0.23, meaning the galaxy is located 3.1 billion light-years from Earth.[2]

Characteristics[edit]

Hubble Space Telescope of RX J2129+0005

RX J2129.7+0005 BCG is one of the largest galaxies with a diameter exceeding 500,000 light-years across. It is found optically luminous[3] and is aligned with its cluster distribution, suggesting that the galaxy lies at the bottom of the cluster's gravitational potential.[4] It has a central velocity dispersions between the range of α ~ 300–400 km s−1[5][6] and little rotational support. Like other elliptical galaxies, RX J2129.7+0005 BCG has a light profile described by the de Vaucouleurs surface brightness law, μ(r) α r1/4, over a large range in radius.[7] It is known to have an extended envelope of excess light, according to the de Vaucouleurs law fitted within the inner regions.[8] As for intracluster light in RX J2129.7+0005 BCG on the other hand, it is estimated to have a range from 27.5 mag arcsec-2 at 100 kpc to ~32 mag arcsec-2 at 700 kpc as observed by r-bands.[9]

It is possible RX J2129.7+0005 BCG was formed from smaller spiral or elliptical galaxies.[10] As they collided with each other, dynamical friction together with tidal forces redistribute ordered orbital kinetic energy into random energy forms, allowing these galaxies to merge into an amorphous, triaxial system resembling the appearance of an elliptical galaxy.[11]

Apart from that, RX J2129+0005 BCG is classified an active galaxy with an X-ray bright nucleus[12] and a low-excitation radio galaxy with a 1.4 GHz luminosity range between the values of 2 × 1023 and 3 × 1025 W Hz−1.[13][14] Its radio power in RX J2129.7+0005 detected, is found in the range of 2 ×1023 to ∼ 1026 W Hz−1 and radio spectral indices α 1.530 and also distributed from ∼ -1 to -0.25 around the central value < α > =-0.68 with a resolved radio emission.[15]

Starburst galaxy[edit]

RX J2129.7+0005 BCG is classified as a starburst galaxy with high rates of star formations.[16] As observed by GALEX, Hubble Space Telescope, Wide-Field Infrared Survey Explorer, Herschel, and Very Large Array, RX J2129.7+0005 BCG has a high radio power. This shows the active galactic nucleus is mainly fueled by cold gas in its host galaxy likely caused by galactic mergers. The mean star formation is estimated to be SFR 9.42 × 10−12 yr−1, corresponding to a mass doubling time of 105 billion years. Looking at these findings, star formation is no longer a significant channel for galaxy growth for z ≤slant 1 but stellar growth is expected inside the galaxy.[17] Another observation finds the near-infrared J - K colour evolution demonstrates that the stellar population in RX J2129.7+0005 has been in place since z = 2, whom researchers expect a shorter period of star formation as predicted by current hierarchical merger models.[18]

RX J2129.7+0005 BCG is also known to contain large molecular gas reservoirs that are ∼9 kpc wide, estimating to be MH2 ≃ (0.5 − 1.4)×1011 M⊙. It also has a long depletion time of τdep ≃ (2 − 4) Gyr, as well as MH2/Mdust ≃ (170 − 300) according to Kilo-Degree Survey (KiDS) observations.[19] It is said RX J2129.7+0005 BCG belongs to a class of rare star-forming and gas-rich BCGs in the distant universe where two conditions are met. This includes high star formation rates and a low central entropy, favoring condensation and gas inflow onto the BCG itself, similarly to what has been found for some local BCGs.[20]

Luminous infrared galaxy[edit]

It is said, RX J2129.7+0005 BCG can be classified as a luminous infrared galaxy according to having signs of excess infrared emissions, detected by Spitzer Space Telescope. The galaxy is known to have an infrared luminosities greater than 1011 L⊙ with a flux ratio of 24/8 μm above 1.0.[21]

Radio source[edit]

The radio source in RX J2129.7+0005 BCG is depicted compact with a steep-spectrum due to observations made by the 140 GHz Bolocam on a set of 45 massive galaxy clusters. Also, the source is located inside a cool-core cluster with an average flux density at 140 GHz but slightly lower than extrapolation from lower frequencies which assumes a constant spectral index and the maximum fractional change in the Sunyaev-Zel'dovich signal integrated over any single cluster due to presence of these radio sources like in RX J2129+0005 BCG is ~= 20%.[22]

Dark matter halo[edit]

According to researchers using a sample of 39 massive clusters from Hubble Frontier Field (HFF), Cluster Lensing And Supernova survey with Hubble (CLASH), and Reionization Lensing Cluster Survey (RELICS), they found the dark matter halo shape in RX J2129.7+0005 BCG is averagely elongated with mean ellipticity of 0.482 ± 0.028 along with the alignment angle of the galaxy of 22.2 ± 3.9 deg. Through the results they found the dark matter halo is on average more elongated compared to the BCG with the mean difference of the ellipticities of 0.11 ± 0.03.[23]

RX J2129.7+0005[edit]

The cluster where RX J2129.7+0005 BCG is known be a massive cool-core galaxy cluster with a mass of M500 ≳ 2 × 1014 M⊙[24][25] and declination of above −15°.[26] It is a distant galaxy cluster according to observations by ROSAT and ASCA.[27] It is also known to have a sign of mild cooling (tcool < 10 Gyr), suggesting little evolution in the cluster cores since z~ 0.4 and that heating and cooling mechanisms may had been stabilized by the epoch.[28]

The mass gas density inside RX J2129.7+0005 has a lower limit of the gas depletion factor Yb,500c ≳ 0.89 according to assuming a conservative Gaussian.[29] The radio source detected by the thermal Sunyaev-Zeldovich (SZ) effect imaging at 28.5 GHz inside RX J2129.7+0005, is found to have a low-frequency flux density and lying in the ranges of -0.6 <~ alpha <~ 2, with a mean value of 0.77 +/- 0.06 and a median of 0.84.[30]

RX J2129.7+0005 is known to be relaxed cluster through researchers using a cosmological-constant model with Ωm = 0.3 and ΩΛ = 0.7. It has a value of H0 = 67.3 +21.3-13.3 km s−1 Mpc−1 limited by temperature calibration and the intrinsic scatter in the X-ray/SZ pressure ratio[disambiguation needed] found to be 13 ± 4 per cent.[31] It has a dark energy density of ΩΛ = 0.865 ± 0.119 according to non-flat Lambda cold dark matter (cosmological constant) models.[32] The cluster is known to contain dwarf galaxies, which their luminosity function exhibits a relatively flat slope (α ~ -1.2 to -1.4) at the faint end of the cluster, gradually becoming steeper larger cluster-centric distance.[33] Moreover, researchers detected X-ray emission which reaches a flux limit of ∼10−16 and ∼10−15 erg s−1 cm−2 detected in the soft and hard bands.[34]

RX J2129.7+0005 has a cooling flow radius of, Rqcf, obtained via with the condition tcool = 25 × tff, encompassing the region of thermally unstable cooling. It has a limited redshift range of 1.3 × 1014 < M500 < 16.6 × 1014 M⊙, 0.03 < z < 0.29, and distribution of its Rccc peaking at ∼0.01 r500 and remaining below ∼0.07 r500, with a weak increase on redshift and no dependence on the cluster mass. Researchers found Rqcf is typically three times larger than Rccc, with a wide distribution, and grows slowly along Rccc, according to an average relation of Rqcf Rccc0.46, showing a large intrinsic scatter.[35]

Gravitational lens[edit]

James Webb Space Telescope image of RX J2129.7+0005 and three images of the supernova host galaxy.

RX J2129.7+0005 contains a strong gravitational lens.[36] Using the lens, it was able to detect a galaxy with an estimated redshift of z = 9.51 ± 0.01, corresponding to 510 million years after the Big Bang. The galaxy show strong nebular emission lines, attributable to oxygen and hydrogen. With a radius of 16.2−7.2+4.6 parsecs, it has a high star formation rate surface density.[37]

The gravitational lens was also able to show three different images of the supernova host galaxy seen by the James Webb Space Telescope. Through these observations, astronomers were able to find a far Type Ia supernova looking bright which makes it helpful to them. Looking at its luminosity allow astronomers to understand how strongly the galaxy cluster RX J2129.7+0005 can magnifying objects located in the background, and how massive the galaxy cluster is.[38]

References[edit]

  1. ^ Chu, A.; Sarron, F.; Durret, F.; Márquez, I. (2022-10-01). "Physical properties of more than one thousand brightest cluster galaxies detected in the Canada-France-Hawaii Telescope Legacy Survey". Astronomy and Astrophysics. 666: A54. arXiv:2206.14209. Bibcode:2022A&A...666A..54C. doi:10.1051/0004-6361/202243504. ISSN 0004-6361.
  2. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-17.
  3. ^ Ogle, Patrick M.; Lanz, Lauranne; Appleton, Philip N.; Helou, George; Mazzarella, Joseph (2019-07-01). "A Catalog of the Most Optically Luminous Galaxies at z < 0.3: Super Spirals, Super Lenticulars, Super Post-mergers, and Giant Ellipticals". The Astrophysical Journal Supplement Series. 243 (1): 14. arXiv:1904.02806. Bibcode:2019ApJS..243...14O. doi:10.3847/1538-4365/ab21c3. ISSN 0067-0049.
  4. ^ Dubinski, John (1998-07-20). "The Origin of the Brightest Cluster Galaxies". The Astrophysical Journal. 502 (1): 141–149. arXiv:astro-ph/9709102. Bibcode:1998ApJ...502..141D. doi:10.1086/305901. ISSN 0004-637X.
  5. ^ Fisher, David; Illingworth, Garth; Franx, Marijn (1995-01-01). "Kinematics of 13 Brightest Cluster Galaxies". The Astrophysical Journal. 438: 539. Bibcode:1995ApJ...438..539F. doi:10.1086/175100. ISSN 0004-637X.
  6. ^ Sohn, Jubee; Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J. (2020-03-01). "Velocity Dispersions of Brightest Cluster Galaxies and Their Host Clusters". The Astrophysical Journal. 891 (2): 129. arXiv:1910.11192. Bibcode:2020ApJ...891..129S. doi:10.3847/1538-4357/ab6e6a. ISSN 0004-637X.
  7. ^ de Vaucouleurs, Gerard (1948-01-01). "Recherches sur les Nebuleuses Extragalactiques". Annales d'Astrophysique. 11: 247. Bibcode:1948AnAp...11..247D. ISSN 0365-0499.
  8. ^ Kormendy, John; Djorgovski, S. (1989-01-01). "Surface photometry and the structure of elliptical galaxies". Annual Review of Astronomy and Astrophysics. 27: 235–277. Bibcode:1989ARA&A..27..235K. doi:10.1146/annurev.aa.27.090189.001315. ISSN 0066-4146.
  9. ^ Zibetti, Stefano; White, Simon D. M.; Schneider, Donald P.; Brinkmann, Jon (2005-04-01). "Intergalactic stars in z~ 0.25 galaxy clusters: systematic properties from stacking of Sloan Digital Sky Survey imaging data". Monthly Notices of the Royal Astronomical Society. 358 (3): 949–967. arXiv:astro-ph/0501194. Bibcode:2005MNRAS.358..949Z. doi:10.1111/j.1365-2966.2005.08817.x. ISSN 0035-8711.
  10. ^ Toomre, Alar (1977-01-01). "Mergers and Some Consequences". Evolution of Galaxies and Stellar Populations: 401. Bibcode:1977egsp.conf..401T.
  11. ^ Barnes, Joshua E. (1988-08-01). "Encounters of Disk/Halo Galaxies". The Astrophysical Journal. 331: 699. Bibcode:1988ApJ...331..699B. doi:10.1086/166593. ISSN 0004-637X.
  12. ^ Brinkmann, W.; Laurent-Muehleisen, S. A.; Voges, W.; Siebert, J.; Becker, R. H.; Brotherton, M. S.; White, R. L.; Gregg, M. D. (2000-04-01). "Radio and X-ray bright AGN: the ROSAT - FIRST correlation". Astronomy and Astrophysics. 356: 445–462. Bibcode:2000A&A...356..445B. ISSN 0004-6361.
  13. ^ Best, P. N.; Heckman, T. M. (2012-04-01). "On the fundamental dichotomy in the local radio-AGN population: accretion, evolution and host galaxy properties". Monthly Notices of the Royal Astronomical Society. 421 (2): 1569–1582. arXiv:1201.2397. Bibcode:2012MNRAS.421.1569B. doi:10.1111/j.1365-2966.2012.20414.x. ISSN 0035-8711.
  14. ^ Lin, Yen-Ting; Huang, Hung-Jin; Chen, Yen-Chi (2018-05-01). "An Analysis Framework for Understanding the Origin of Nuclear Activity in Low-power Radio Galaxies". The Astronomical Journal. 155 (5): 188. arXiv:1803.02482. Bibcode:2018AJ....155..188L. doi:10.3847/1538-3881/aab5b4. ISSN 0004-6256.
  15. ^ Yu, Heng; Tozzi, Paolo; van Weeren, Reinout; Liuzzo, Elisabetta; Giovannini, Gabriele; Donahue, Megan; Balestra, Italo; Rosati, Piero; Aravena, Manuel (2018-02-01). "JVLA 1.5 GHz Continuum Observation of CLASH Clusters. I. Radio Properties of the BCGs". The Astrophysical Journal. 853 (2): 100. arXiv:1707.05336. Bibcode:2018ApJ...853..100Y. doi:10.3847/1538-4357/aaa421. ISSN 0004-637X.
  16. ^ Donahue, Megan; Connor, Thomas; Fogarty, Kevin; Li, Yuan; Voit, G. Mark; Postman, Marc; Koekemoer, Anton; Moustakas, John; Bradley, Larry; Ford, Holland (2015-06-01). "Ultraviolet Morphology and Unobscured UV Star Formation Rates of CLASH Brightest Cluster Galaxies". The Astrophysical Journal. 805 (2): 177. arXiv:1504.00598. Bibcode:2015ApJ...805..177D. doi:10.1088/0004-637X/805/2/177. ISSN 0004-637X.
  17. ^ Cooke, Kevin C.; O'Dea, Christopher P.; Baum, Stefi A.; Tremblay, Grant R.; Cox, Isabella G.; Gladders, Michael (2016-12-01). "Star Formation in Intermediate Redshift 0.2 < z < 0.7 Brightest Cluster Galaxies". The Astrophysical Journal. 833 (2): 224. arXiv:1610.05310. Bibcode:2016ApJ...833..224C. doi:10.3847/1538-4357/833/2/224. ISSN 0004-637X.
  18. ^ Stott, J. P.; Edge, A. C.; Smith, G. P.; Swinbank, A. M.; Ebeling, H. (2008-03-01). "Near-infrared evolution of brightest cluster galaxies in the most X-ray luminous clusters since z = 1". Monthly Notices of the Royal Astronomical Society. 384 (4): 1502–1510. arXiv:0712.0496. Bibcode:2008MNRAS.384.1502S. doi:10.1111/j.1365-2966.2007.12807.x. ISSN 0035-8711.
  19. ^ Castignani, G.; Radovich, M.; Combes, F.; Salomé, P.; Maturi, M.; Moscardini, L.; Bardelli, S.; Giocoli, C.; Lesci, G.; Marulli, F.; Puddu, E.; Sereno, M. (2022-11-01). "Star-forming and gas-rich brightest cluster galaxies at z ∼ 0.4 in the Kilo-Degree Survey". Astronomy and Astrophysics. 667: A52. arXiv:2207.12073. Bibcode:2022A&A...667A..52C. doi:10.1051/0004-6361/202243689. ISSN 0004-6361.
  20. ^ Castignani, G.; Pandey-Pommier, M.; Hamer, S. L.; Combes, F.; Salomé, P.; Freundlich, J.; Jablonka, P. (2020-08-01). "Molecular gas in CLASH brightest cluster galaxies at z ∼ 0.2 - 0.9". Astronomy and Astrophysics. 640: A65. arXiv:2004.01786. Bibcode:2020A&A...640A..65C. doi:10.1051/0004-6361/202038081. ISSN 0004-6361.
  21. ^ Quillen, Alice C.; Zufelt, Nicholas; Park, Jaehong; O'Dea, Christopher P.; Baum, Stefi A.; Privon, George; Noel-Storr, Jacob; Edge, Alastair; Russell, Helen; Fabian, Andy; Donahue, Megan; Bregman, Joel N.; McNamara, Brian R.; Sarazin, Craig L. (2008-05-01). "An Infrared Survey of Brightest Cluster Galaxies. I." The Astrophysical Journal Supplement Series. 176 (1): 39–58. arXiv:0711.1118. Bibcode:2008ApJS..176...39Q. doi:10.1086/525560. ISSN 0067-0049.
  22. ^ Sayers, J.; Mroczkowski, T.; Czakon, N. G.; Golwala, S. R.; Mantz, A.; Ameglio, S.; Downes, T. P.; Koch, P. M.; Lin, K. -Y.; Molnar, S. M.; Moustakas, L.; Muchovej, S. J. C.; Pierpaoli, E.; Shitanishi, J. A.; Siegel, S. (2013-02-01). "The Contribution of Radio Galaxy Contamination to Measurements of the Sunyaev-Zel'dovich Decrement in Massive Galaxy Clusters at 140 GHz with Bolocam". The Astrophysical Journal. 764 (2): 152. arXiv:1209.5129. Bibcode:2013ApJ...764..152S. doi:10.1088/0004-637X/764/2/152. ISSN 0004-637X.
  23. ^ Okabe, Taizo; Oguri, Masamune; Peirani, Sébastien; Suto, Yasushi; Dubois, Yohan; Pichon, Christophe; Kitayama, Tetsu; Sasaki, Shin; Nishimichi, Takahiro (2020-08-01). "Shapes and alignments of dark matter haloes and their brightest cluster galaxies in 39 strong lensing clusters". Monthly Notices of the Royal Astronomical Society. 496 (3): 2591–2604. arXiv:2005.11469. Bibcode:2020MNRAS.496.2591O. doi:10.1093/mnras/staa1479. ISSN 0035-8711.
  24. ^ Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio (2014-12-18). "Cosmological tests using the angular size of galaxy clusters". Monthly Notices of the Royal Astronomical Society. 447 (1): 479–485. arXiv:1411.5678. doi:10.1093/mnras/stu2470. ISSN 1365-2966.
  25. ^ Koulouridis, E.; Gkini, A.; Drigga, E. (2024-04-01). "AGNs in massive galaxy clusters: Role of galaxy merging, infalling groups, cluster mass, and dynamical state". Astronomy and Astrophysics. 684: A111. arXiv:2401.05747. Bibcode:2024A&A...684A.111K. doi:10.1051/0004-6361/202348212. ISSN 0004-6361.
  26. ^ Ferragamo, A.; Barrena, R.; Rubiño-Martín, J. A.; Aguado-Barahona, A.; Streblyanska, A.; Tramonte, D.; Génova-Santos, R. T.; Hempel, A.; Lietzen, H. (2021-11-01). "Velocity dispersion and dynamical mass for 270 galaxy clusters in the Planck PSZ1 catalogue". Astronomy and Astrophysics. 655: A115. arXiv:2109.04967. Bibcode:2021A&A...655A.115F. doi:10.1051/0004-6361/202140382. ISSN 0004-6361.
  27. ^ Ota, N.; Mitsuda, K. (2004-12-01). "A uniform X-ray analysis of 79 distant galaxy clusters with ROSAT and ASCA". Astronomy and Astrophysics. 428 (3): 757–779. arXiv:astro-ph/0407602. Bibcode:2004A&A...428..757O. doi:10.1051/0004-6361:20041087. ISSN 0004-6361.
  28. ^ Bauer, F. E.; Fabian, A. C.; Sanders, J. S.; Allen, S. W.; Johnstone, R. M. (2005-06-01). "The prevalence of cooling cores in clusters of galaxies at z~ 0.15-0.4". Monthly Notices of the Royal Astronomical Society. 359 (4): 1481–1490. arXiv:astro-ph/0503232. Bibcode:2005MNRAS.359.1481B. doi:10.1111/j.1365-2966.2005.08999.x. ISSN 0035-8711.
  29. ^ Corasaniti, Pier-Stefano; Sereno, Mauro; Ettori, Stefano (2021-04-01). "Cosmological Constraints from Galaxy Cluster Sparsity, Cluster Gas Mass Fraction, and Baryon Acoustic Oscillation Data". The Astrophysical Journal. 911 (2): 82. arXiv:2103.03283. Bibcode:2021ApJ...911...82C. doi:10.3847/1538-4357/abe9a4. ISSN 0004-637X.
  30. ^ Cooray, Asantha R.; Grego, Laura; Holzapfel, William L.; Joy, Marshall; Carlstrom, John E. (1998-04-01). "Radio Sources in Galaxy Clusters at 28.5 GHz". The Astronomical Journal. 115 (4): 1388–1399. arXiv:astro-ph/9711218. Bibcode:1998AJ....115.1388C. doi:10.1086/300310. ISSN 0004-6256.
  31. ^ Wan, Jenny T.; Mantz, Adam B.; Sayers, Jack; Allen, Steven W.; Morris, R. Glenn; Golwala, Sunil R. (2021-06-01). "Measuring H0 using X-ray and SZ effect observations of dynamically relaxed galaxy clusters". Monthly Notices of the Royal Astronomical Society. 504 (1): 1062–1076. arXiv:2101.09389. Bibcode:2021MNRAS.504.1062W. doi:10.1093/mnras/stab948. ISSN 0035-8711.
  32. ^ Mantz, Adam B.; Morris, R. Glenn; Allen, Steven W.; Canning, Rebecca E. A.; Baumont, Lucie; Benson, Bradford; Bleem, Lindsey E.; Ehlert, Steven R.; Floyd, Benjamin; Herbonnet, Ricardo; Kelly, Patrick L.; Liang, Shuang; von der Linden, Anja; McDonald, Michael; Rapetti, David A. (2022-02-01). "Cosmological constraints from gas mass fractions of massive, relaxed galaxy clusters". Monthly Notices of the Royal Astronomical Society. 510 (1): 131–145. arXiv:2111.09343. Bibcode:2022MNRAS.510..131M. doi:10.1093/mnras/stab3390. ISSN 0035-8711.
  33. ^ Hashimoto, Yasuhiro; Böhringer, Hans; Umetsu, Keiichi (2022-04-01). "Dwarf galaxy luminosity functions and cluster environments". Monthly Notices of the Royal Astronomical Society. 511 (2): 2796–2813. Bibcode:2022MNRAS.511.2796H. doi:10.1093/mnras/stac209. ISSN 0035-8711.
  34. ^ Liu, Ang; Tozzi, Paolo; Rosati, Piero; Bergamini, Pietro; Caminha, Gabriel Bartosch; Gilli, Roberto; Grillo, Claudio; Meneghetti, Massimo; Mercurio, Amata; Nonino, Mario; Vanzella, Eros (2021-04-01). "Systematic search for lensed X-ray sources in the CLASH fields". Astronomy and Astrophysics. 648: A47. arXiv:2102.05788. Bibcode:2021A&A...648A..47L. doi:10.1051/0004-6361/202040249. ISSN 0004-6361.
  35. ^ Wang, Lei; Tozzi, Paolo; Yu, Heng; Gaspari, Massimo; Ettori, Stefano (2023-06-01). "Physical cool-core condensation radius in massive galaxy clusters". Astronomy and Astrophysics. 674: A102. arXiv:2304.08810. Bibcode:2023A&A...674A.102W. doi:10.1051/0004-6361/202244138. ISSN 0004-6361.
  36. ^ Angora, G.; Rosati, P.; Meneghetti, M.; Brescia, M.; Mercurio, A.; Grillo, C.; Bergamini, P.; Acebron, A.; Caminha, G.; Nonino, M.; Tortorelli, L.; Bazzanini, L.; Vanzella, E. (2023-08-01). "Searching for strong galaxy-scale lenses in galaxy clusters with deep networks. I. Methodology and network performance". Astronomy and Astrophysics. 676: A40. arXiv:2303.00769. Bibcode:2023A&A...676A..40A. doi:10.1051/0004-6361/202346283. ISSN 0004-6361.
  37. ^ Williams, Hayley; Kelly, Patrick L.; Chen, Wenlei; Brammer, Gabriel; Zitrin, Adi; Treu, Tommaso; Scarlata, Claudia; Koekemoer, Anton M.; Oguri, Masamune; Lin, Yu-Heng; Diego, Jose M.; Nonino, Mario; Hjorth, Jens; Langeroodi, Danial; Broadhurst, Tom (2023-04-28). "A magnified compact galaxy at redshift 9.51 with strong nebular emission lines". Science. 380 (6643): 416–420. arXiv:2210.15699. Bibcode:2023Sci...380..416W. doi:10.1126/science.adf5307. ISSN 0036-8075. PMID 37053263.
  38. ^ [email protected]. "Seeing Triple | ESA/Webb". esawebb.org. Retrieved 2024-06-17.