From Wikipedia, the free encyclopedia

Within quantum technology, a quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. [1] The field of quantum sensing deals with the design and engineering of quantum sources (e.g., entangled) and quantum measurements that are able to beat the performance of any classical strategy in a number of technological applications. [2] This can be done with photonic systems [3] or solid state systems. [4]

Characteristics

In photonics and quantum optics, photonic quantum sensing leverages entanglement, single photons and squeezed states to perform extremely precise measurements. Optical sensing makes use of continuously variable quantum systems such as different degrees of freedom of the electromagnetic field, vibrational modes of solids, and Bose–Einstein condensates. [5] These quantum systems can be probed to characterize an unknown transformation between two quantum states. Several methods are in place to improve photonic sensors' quantum illumination of targets, which have been used to improve detection of weak signals by the use of quantum correlation. [6] [7] [8] [9] [10]

Quantum sensors are often built on continuously variable systems, i.e., quantum systems characterized by continuous degrees of freedom such as position and momentum quadratures. The basic working mechanism typically relies on optical states of light, often involving quantum mechanical properties such as squeezing or two-mode entanglement. [3] These states are sensitive to physical transformations that are detected by interferometric measurements. [5]

Quantum sensing can also be utilized in non-photonic areas such as spin qubits, trapped ions, flux qubits, [4] and nanoparticles. [11] These systems can be compared by physical characteristics to which they respond, for example, trapped ions respond to electrical fields while spin systems will respond to magnetic fields. [4] Trapped Ions are useful in their quantized motional levels which are strongly coupled to the electric field. They have been proposed to study electric field noise above surfaces, [12] and more recently, rotation sensors. [13]

In solid-state physics, a quantum sensor is a quantum device that responds to a stimulus. Usually this refers to a sensor that, which has quantized energy levels, uses quantum coherence to measure a physical quantity, or uses entanglement to improve measurements beyond what can be done with classical sensors. [4] There are 4 criteria for solid-state quantum sensors: [4]

  1. The system has to have discrete, resolvable energy levels.
  2. You can initialize the sensor and you can perform readout (turn on and get answer).
  3. You can coherently manipulate the sensor.
  4. The sensor interacts with a physical quantity and has some response to that quantity.


Research and applications

Quantum sensors have applications in a wide variety of fields including microscopy, positioning systems, communication technology, electric and magnetic field sensors, as well as geophysical areas of research such as mineral prospecting and seismology. [4] Many measurement devices utilize quantum properties in order to probe measurements such as atomic clocks, superconducting quantum interference devices, and nuclear magnetic resonance spectroscopy. [4] [14] With new technological advancements, individual quantum systems can be used as measurement devices, utilizing entanglement, superposition, interference and squeezing to enhance sensitivity and surpass performance of classical strategies.

A good example of an early quantum sensor is an avalanche photodiode (APD). APDs have been used to detect entangled photons. With additional cooling and sensor improvements can be used where photomultiplier tubes (PMT) in fields such as medical imaging. APDs, in the form of 2-D and even 3-D stacked arrays, can be used as a direct replacement for conventional sensors based on silicon diodes. [15]

The Defense Advanced Research Projects Agency (DARPA) launched a research program in optical quantum sensors that seeks to exploit ideas from quantum metrology and quantum imaging, such as quantum lithography and the NOON state, [16] in order to achieve these goals with optical sensor systems such as lidar. [6] [17] [18] [19] The United States judges quantum sensing to be the most mature of quantum technologies for military use, theoretically replacing GPS in areas without coverage or possibly acting with ISR capabilities or detecting submarine or subterranean structures or vehicles, as well as nuclear material. [20]

Photonic quantum sensors, microscopy and gravitational wave detectors

For photonic systems, current areas of research consider feedback and adaptive protocols. This is an active area of research in discrimination and estimation of bosonic loss. [21]

Injecting squeezed light into interferometers allows for higher sensitivity to weak signals that would be unable to be classically detected. [1] A practical application of quantum sensing is realized in gravitational wave sensing. [22] Gravitational wave detectors, such as LIGO, utilize squeezed light to measure signals below the standard quantum limit. [23] Squeezed light has also been used to detect signals below the standard quantum limit in plasmonic sensors and atomic force microscopy. [24]

Uses of projection noise removal

Quantum sensing also has the capability to overcome resolution limits, where current issues of vanishing distinguishability between two close frequencies can be overcome by making the projection noise vanish. [25] [26] The diminishing projection noise has direct applications in communication protocols and nano-Nuclear Magnetic Resonance. [27] [28]

Other uses of entanglement

Entanglement can be used to improve upon existing atomic clocks [29] [30] [31] or create more sensitive magnetometers. [32] [33]

Quantum radars

Quantum radar is also an active area of research. Current classical radars can interrogate many target bins while quantum radars are limited to a single polarization or range. [34] A proof-of-concept quantum radar or quantum illuminator using quantum entangled microwaves was able to detect low reflectivity objects at room-temperature – such may be useful for improved radar systems, security scanners and medical imaging systems. [35] [36] [37]

Neuroimaging

In neuroimaging, the first quantum brain scanner uses magnetic imaging and could become a novel whole-brain scanning approach. [38] [39]

Gravity cartography of subterraneans

Quantum gravity-gradiometers that could be used to map and investigate subterraneans are also in development. [40] [41]


References

  1. ^ a b Li, Dong; Gard, Bryan T.; Gao, Yang; Yuan, Chun-Hua; Zhang, Weiping; Lee, Hwang; Dowling, Jonathan P. (December 19, 2016). "Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection". Physical Review A. 94 (6): 063840. arXiv: 1603.09019. Bibcode: 2016PhRvA..94f3840L. doi: 10.1103/PhysRevA.94.063840. S2CID  118404862.
  2. ^ Rademacher, Markus; Millen, James; Li, Ying Lia (October 1, 2020). "Quantum sensing with nanoparticles for gravimetry: when bigger is better". Advanced Optical Technologies. 9 (5): 227–239. arXiv: 2005.14642. Bibcode: 2020AdOT....9..227R. doi: 10.1515/aot-2020-0019. ISSN  2192-8584. S2CID  219124060.
  3. ^ a b Pirandola, S; Bardhan, B. R.; Gehring, T.; Weedbrook, C.; Lloyd, S. (2018). "Advances in photonic quantum sensing". Nature Photonics. 12 (12): 724–733. arXiv: 1811.01969. Bibcode: 2018NaPho..12..724P. doi: 10.1038/s41566-018-0301-6. S2CID  53626745.
  4. ^ a b c d e f g Degen, C. L.; Reinhard, F.; Cappellaro, P. (2017). "Quantum sensing". Reviews of Modern Physics. 89 (3): 035002. arXiv: 1611.02427. Bibcode: 2017RvMP...89c5002D. doi: 10.1103/RevModPhys.89.035002. S2CID  2555443.
  5. ^ a b Adesso, Gerardo; Ragy, Sammy; Lee, Antony R. (June 2014). "Continuous Variable Quantum Information: Gaussian States and Beyond". Open Systems & Information Dynamics. 21 (1n02): 1440001. arXiv: 1401.4679. doi: 10.1142/S1230161214400010. S2CID  15318256.
  6. ^ a b Gallego Torromé, Ricardo; Barzanjeh, Shabir (2023). "Advances in quantum radar and quantum LiDAR". Progress in Quantum Electronics. 93: 100497. arXiv: 2310.07198. doi: 10.1016/j.pquantelec.2023.100497.
  7. ^ Tan, Si-Hui; Erkmen, Baris I.; Giovannetti, Vittorio; Guha, Saikat; Lloyd, Seth; Maccone, Lorenzo; Pirandola, Stefano; Shapiro, Jeffrey H. (December 18, 2008). "Quantum Illumination with Gaussian States". Physical Review Letters. 101 (25): 253601. arXiv: 0810.0534. Bibcode: 2008PhRvL.101y3601T. doi: 10.1103/PhysRevLett.101.253601. PMID  19113706. S2CID  26890855.
  8. ^ Shapiro, Jeffrey H; Lloyd, Seth (June 24, 2009). "Quantum illumination versus coherent-state target detection". New Journal of Physics. 11 (6): 063045. arXiv: 0902.0986. Bibcode: 2009NJPh...11f3045S. doi: 10.1088/1367-2630/11/6/063045. S2CID  2396896.
  9. ^ Barzanjeh, Sh.; Abdi, M.; Milburn, G. J.; Tombesi, P.; Vitali, D. (September 28, 2012). "Reversible Optical-to-Microwave Quantum Interface". Physical Review Letters. 109 (13): 130503. arXiv: 1110.6215. Bibcode: 2012PhRvL.109m0503B. doi: 10.1103/PhysRevLett.109.130503. PMID  23030075. S2CID  6470118.
  10. ^ Guha, Saikat; Erkmen, Baris I. (November 10, 2009). "Gaussian-state quantum-illumination receivers for target detection". Physical Review A. 80 (5): 052310. arXiv: 0911.0950. Bibcode: 2009PhRvA..80e2310G. doi: 10.1103/PhysRevA.80.052310. S2CID  109058131.
  11. ^ Kustura, K.; Gonzalez-Ballestero, C.; De los Ríos Sommer, A.; Meyer, N.; Quidant, R.; Romero-Isart, O. (April 7, 2022). "Mechanical Squeezing via Unstable Dynamics in a Microcavity". Physical Review Letters. 128 (14): 143601. arXiv: 2112.01144. Bibcode: 2022PhRvL.128n3601K. doi: 10.1103/PhysRevLett.128.143601. PMID  35476467. S2CID  244799128.
  12. ^ Brownnutt, M.; Kumph, M.; Rabl, P.; Blatt, R. (December 11, 2015). "Ion-trap measurements of electric-field noise near surfaces". Reviews of Modern Physics. 87 (4): 1419–1482. arXiv: 1409.6572. Bibcode: 2015RvMP...87.1419B. doi: 10.1103/RevModPhys.87.1419. S2CID  119008607.
  13. ^ Campbell, W (February 23, 2017). "Rotation sensing with trapped ions". Journal of Physics B. 50 (6): 064002. arXiv: 1609.00659. Bibcode: 2017JPhB...50f4002C. doi: 10.1088/1361-6455/aa5a8f. S2CID  26952809.
  14. ^ Pezzè, Luca; Smerzi, Augusto; Oberthaler, Markus K.; Schmied, Roman; Treutlein, Philipp (September 5, 2018). "Quantum metrology with nonclassical states of atomic ensembles". Reviews of Modern Physics. 90 (3): 035005. arXiv: 1609.01609. Bibcode: 2018RvMP...90c5005P. doi: 10.1103/RevModPhys.90.035005. S2CID  119250709.
  15. ^ Campbell, Joe C. (January 2007). "Recent Advances in Telecommunications Avalanche Photodiodes". Journal of Lightwave Technology. 25 (1): 109–121. Bibcode: 2007JLwT...25..109C. doi: 10.1109/jlt.2006.888481. S2CID  1398387.
  16. ^ Israel, Yonatan (2014). "Supersensitive Polarization Microscopy Using NOON States of Light". Physical Review Letters. 112 (10): 103604. Bibcode: 2014PhRvL.112j3604I. doi: 10.1103/PhysRevLett.112.103604. PMID  24679294.
  17. ^ DARPA Quantum Sensor Program.
  18. ^ BROAD AGENCY ANNOUNCEMENT (BAA) 07-22 Quantum Sensors
  19. ^ Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H. (October 16, 2017). "Entanglement-enhanced lidars for simultaneous range and velocity measurements". Physical Review A. 96 (4): 040304. arXiv: 1705.06793. Bibcode: 2017PhRvA..96d0304Z. doi: 10.1103/PhysRevA.96.040304. S2CID  54955615.
  20. ^ Kelley M. Sayler (June 7, 2021). Defense Primer: Quantum Technology (PDF) (Report). Congressional Research Service. Retrieved July 22, 2021.
  21. ^ Laurenza, Riccardo; Lupo, Cosmo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano (March 1, 2018). "Channel Simulation in Quantum Metrology". Quantum Measurements and Quantum Metrology. 5 (1): 1–12. arXiv: 1712.06603. Bibcode: 2018QMQM....5....1L. doi: 10.1515/qmetro-2018-0001. S2CID  119001470.
  22. ^ Barsotti, Lisa (2014). "Quantum Noise Reduction in the LIGO Gravitational Wave Interferometer with Squeezed States of Light". CLEO: Applications and Technology 2014. p. AW3P.4. doi: 10.1364/CLEO_AT.2014.AW3P.4. ISBN  978-1-55752-999-2. S2CID  28876707.
  23. ^ Yu, Haocun; McCuller, L.; Tse, M.; Kijbunchoo, N.; Barsotti, L.; Mavalvala, N. (July 2020). "Quantum correlations between light and the kilogram-mass mirrors of LIGO". Nature. 583 (7814): 43–47. arXiv: 2002.01519. Bibcode: 2020Natur.583...43Y. doi: 10.1038/s41586-020-2420-8. PMID  32612226. S2CID  211031944.
  24. ^ Pooser, Raphael C.; Lawrie, Benjamin (May 20, 2015). "Ultrasensitive measurement of microcantilever displacement below the shot-noise limit". Optica. 2 (5): 393. arXiv: 1405.4767. Bibcode: 2015Optic...2..393P. doi: 10.1364/OPTICA.2.000393. S2CID  118422029.
  25. ^ Nair, Ranjith; Tsang, Mankei (November 4, 2016). "Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit". Physical Review Letters. 117 (19): 190801. arXiv: 1604.00937. Bibcode: 2016PhRvL.117s0801N. doi: 10.1103/PhysRevLett.117.190801. PMID  27858425. S2CID  25870660.
  26. ^ Tsang, Mankei; Nair, Ranjith; Lu, Xiao-Ming (August 29, 2016). "Quantum Theory of Superresolution for Two Incoherent Optical Point Sources". Physical Review X. 6 (3): 031033. arXiv: 1511.00552. Bibcode: 2016PhRvX...6c1033T. doi: 10.1103/PhysRevX.6.031033. S2CID  32680254.
  27. ^ Maze, J. R.; Stanwix, P. L.; Hodges, J. S.; Hong, S.; Taylor, J. M.; Cappellaro, P.; Jiang, L.; Dutt, M. V. Gurudev; Togan, E.; Zibrov, A. S.; Yacoby, A. (October 2008). "Nanoscale magnetic sensing with an individual electronic spin in diamond". Nature. 455 (7213): 644–647. Bibcode: 2008Natur.455..644M. doi: 10.1038/nature07279. PMID  18833275. S2CID  136428582.
  28. ^ Kong, Xi; Stark, Alexander; Du, Jiangfeng; McGuinness, Liam P.; Jelezko, Fedor (August 6, 2015). "Towards Chemical Structure Resolution with Nanoscale Nuclear Magnetic Resonance Spectroscopy". Physical Review Applied. 4 (2): 024004. arXiv: 1506.05882. Bibcode: 2015PhRvP...4b4004K. doi: 10.1103/PhysRevApplied.4.024004. S2CID  172297.
  29. ^ Bollinger, J. J .; Itano, Wayne M.; Wineland, D. J.; Heinzen, D. J. (December 1, 1996). "Optimal frequency measurements with maximally correlated states". Physical Review A. 54 (6): R4649–R4652. Bibcode: 1996PhRvA..54.4649B. doi: 10.1103/physreva.54.r4649. PMID  9914139.
  30. ^ Marciniak, Christian D.; Feldker, Thomas; Pogorelov, Ivan; Kaubruegger, Raphael; Vasilyev, Denis V.; Van Bijnen, Rick; Schindler, Philipp; Zoller, Peter; Blatt, Rainer; Monz, Thomas (March 23, 2022). "Optimal metrology with programmable quantum sensors". Nature. 603 (7902): 604–609. arXiv: 2107.01860. Bibcode: 2022Natur.603..604M. doi: 10.1038/s41586-022-04435-4. PMID  35322252. S2CID  245837971.
  31. ^ Franke, Johannes; Muleady, Sean R.; Kaubruegger, Raphael; Kranzl, Florian; Blatt, Rainer; Rey, Ana Maria; Joshi, Manoj K.; Roos, Christian F. (August 30, 2023). "Quantum-enhanced sensing on optical transitions through finite-range interactions". Nature. 621 (7980): 740–745. arXiv: 2303.10688. Bibcode: 2023Natur.621..740F. doi: 10.1038/s41586-023-06472-z. ISSN  0028-0836. PMID  37648868. S2CID  257632503.
  32. ^ Auzinsh, M.; Budker, D.; Kimball, D. F.; Rochester, S. M.; Stalnaker, J. E.; Sushkov, A. O.; Yashchuk, V. V. (October 19, 2004). "Can a Quantum Nondemolition Measurement Improve the Sensitivity of an Atomic Magnetometer?". Physical Review Letters. 93 (17): 173002. arXiv: physics/0403097. Bibcode: 2004PhRvL..93q3002A. doi: 10.1103/physrevlett.93.173002. PMID  15525071. S2CID  31287682.
  33. ^ Guillaume, Alexandre; Dowling, Jonathan P. (April 27, 2006). "Heisenberg-limited measurements with superconducting circuits". Physical Review A. 73 (4): 040304(R). arXiv: quant-ph/0512144. Bibcode: 2006PhRvA..73d0304G. doi: 10.1103/physreva.73.040304. S2CID  33820154.
  34. ^ Lanzagorta, Marco (October 31, 2011). "Quantum Radar". Synthesis Lectures on Quantum Computing. 3 (1): 1–139. doi: 10.2200/S00384ED1V01Y201110QMC005. S2CID  27569963.
  35. ^ "Scientists demonstrate quantum radar prototype". phys.org. Retrieved June 12, 2020.
  36. ^ ""Quantum radar" uses entangled photons to detect objects". New Atlas. May 12, 2020. Retrieved June 12, 2020.
  37. ^ Barzanjeh, S.; Pirandola, S.; Vitali, D.; Fink, J. M. (May 1, 2020). "Microwave quantum illumination using a digital receiver". Science Advances. 6 (19): eabb0451. arXiv: 1908.03058. Bibcode: 2020SciA....6..451B. doi: 10.1126/sciadv.abb0451. PMC  7272231. PMID  32548249.
  38. ^ "Researchers build first modular quantum brain sensor, record signal". phys.org. Retrieved July 11, 2021.
  39. ^ Coussens, Thomas; Abel, Christopher; Gialopsou, Aikaterini; Bason, Mark G.; James, Tim M.; Orucevic, Fedja; Kruger, Peter (June 10, 2021). "Modular optically-pumped magnetometer system". arXiv: 2106.05877 [ physics.atom-ph].
  40. ^ Stray, Ben; Lamb, Andrew; Kaushik, Aisha; Vovrosh, Jamie; Rodgers, Anthony; Winch, Jonathan; Hayati, Farzad; Boddice, Daniel; Stabrawa, Artur; Niggebaum, Alexander; Langlois, Mehdi; Lien, Yu-Hung; Lellouch, Samuel; Roshanmanesh, Sanaz; Ridley, Kevin; de Villiers, Geoffrey; Brown, Gareth; Cross, Trevor; Tuckwell, George; Faramarzi, Asaad; Metje, Nicole; Bongs, Kai; Holynski, Michael (February 2022). "Quantum sensing for gravity cartography". Nature. 602 (7898): 590–594. Bibcode: 2022Natur.602..590S. doi: 10.1038/s41586-021-04315-3. ISSN  1476-4687. PMC  8866129. PMID  35197616.
  41. ^ "Quantum Gravity Sensor Breakthrough Paves Way for Groundbreaking Map of World Under Earth's Surface". SciTechDaily. February 27, 2022. Retrieved March 2, 2022.