From Wikipedia, the free encyclopedia
Schematic representation of a two-step pretargeting approach.

Pretargeting (imaging) is a tool for nuclear medicine and radiotherapy. Imaging studies require a high contrast of target to background. This can be provided by using a biomarker which has a high affinity and specificity for its target (e.g. an antibody).

History

The beginning of antibody imaging

Owing to their high affinity and specificity, antibodies have been considered as suitable vehicles for imaging and therapeutics, since the beginning of the 20th Century. [1] [2] [3]

The first radiolabelled antibodies were used in the early 1950s and got used for cancer therapy, [4] [5] but it took roughly two more decades before it was demonstrated that they target human tumour associated antigens in cancer patients. [6] Due to the hybridoma technology in 1975, monoclonal ( murine) antibodies could easily be produced in practical amounts, [7] consequently the number of studies increased drastically. However, these types of antibodies turned out to be quite troublesome, due to the triggering of the human anti-murine antibody response. [8] Consequently chimeric, humanised and human monoclonal antibodies have been created, produced and get used nowadays. [9]

Owing to the high molecular weight of antibodies and the Fc domain of the antibody, [10] a slow clearance from the blood and non-target tissue occurs, which results in low tumour-to-blood and tumour-to-muscle ratios. [11] [12] Because of this, antibodies which are going to be used for imaging purposes need to be labelled with radionuclides that have a long half-life, [13] which increases the radiation dose to the patient. This consequently encouraged the development of lower molecular weight antibodies and resulted in the development of minibodies, diabodies, single chain variable fragments (scFv) and single domain fragments (Fv). [14]

Development of pretargeted imaging

To bypass the problem associated with the prolonged circulation time of radiolabelled antibodies, in the mid-1980s a strategy called pretargeted radioimmunotherapy was developed. [15] [16] In short, this approach contained two important steps: 1. administration of a macromolecular targeting vector (usually antibody-based), and 2. a small radiolabelled molecule, which interacts with the targeting vector. Most importantly the small radiolabelled molecule gets injected after a predetermined lag period after which the macromolecule has had enough time to bind to its target and the residual unbound macromolecule to be cleared out of the system. [14] To ensure sufficient interaction between the two components, suitable modifications with complementary species are required (like bioorthogonal modifications). [17]

Pretargeting strategies can lead to an improved imaging contrast, as it combines the high target specificity and affinity of an antibody with the fast pharmacokinetic properties of a small molecule. The concept of pretargeting, although existing for several decades already, was limited to a few distinct classes. Developing chemical reactions that proceed quickly within living systems, without interacting with the large variety of existing functional groups, used to be an inherent difficulty. However, there have been several advancements in this area over the past few years. [14]

Conventional pretargeting systems

Bispecific antibodies and radiolabelled haptens

The beginning of the pretargeting concept was based on bispecific antibodies which were able to bind a specific target antigen and a radiolabelled hapten. [18] [19] [20] [21] [22] [23] Possible was this approach because of the development of monoclonal Antibodies which could be connected to radiometal chelates. [15] Also connecting two haptens via a two amino acid linker resulted in an enhancement effect of the affinity, which improved the uptake and retention of the radiolabelled compound without affecting the rapid clearance. [24]

Limiting factor of this approach were the slow binding constant which was rarely higher than 10−10 M, amongst other reasons. [14]

Biotin-(strept)avidin

After the discovery of the fast interaction between Biotin and (Strept)Avidin, which show a high binding affinity, this approach has been used in many different ways (e.g. for protein purification purposes like the Step-tag). [25] [26] [27] [28] [29] [30] [31]

References

  1. ^ Wu, Anna M.; Olafsen, Tove (May 2008). "Antibodies for Molecular Imaging of Cancer". The Cancer Journal. 14 (3): 191–197. doi: 10.1097/ppo.0b013e31817b07ae. ISSN  1528-9117. PMID  18536559. S2CID  36963226.
  2. ^ Knowles, Scott M.; Wu, Anna M. (2012-11-01). "Advances in Immuno–Positron Emission Tomography: Antibodies for Molecular Imaging in Oncology". Journal of Clinical Oncology. 30 (31): 3884–3892. doi: 10.1200/JCO.2012.42.4887. ISSN  0732-183X. PMC  3478579. PMID  22987087.
  3. ^ Boerman, Otto C.; Oyen, Wim J. G. (2011-08-01). "Immuno-PET of Cancer: A Revival of Antibody Imaging". Journal of Nuclear Medicine. 52 (8): 1171–1172. doi: 10.2967/jnumed.111.089771. ISSN  0161-5505. PMID  21764784. S2CID  22588904.
  4. ^ Pressman, David; Korngold, Leonhard (1953). "The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies". Cancer. 6 (3): 619–623. doi: 10.1002/1097-0142(195305)6:3<619::aid-cncr2820060319>3.0.co;2-y. ISSN  1097-0142. PMID  13042784. S2CID  29001745.
  5. ^ Wisser, R.W (September 1956). "A Study of the Preparation, Localization, and Effects of Antitumor Antibodies Labeled with I131". Cancer Research. 16 (8): 761–773. PMID  13364902.
  6. ^ Goldenberg, David M.; DeLand, Frank; Kim, Euishin; Bennett, Sidney; Primus, F. James; van Nagell, John R.; Estes, Norman; DeSimone, Philip; Rayburn, Pam (1978-06-22). "Use of Radio-Labeled Antibodies to Carcinoembryonic Antigen for the Detection and Localization of Diverse Cancers by External Photoscanning". New England Journal of Medicine. 298 (25): 1384–1388. doi: 10.1056/NEJM197806222982503. ISSN  0028-4793. PMID  349387.
  7. ^ Köhler, G.; Milstein, C. (August 1975). "Continuous cultures of fused cells secreting antibody of predefined specificity". Nature. 256 (5517): 495–497. Bibcode: 1975Natur.256..495K. doi: 10.1038/256495a0. ISSN  1476-4687. PMID  1172191. S2CID  4161444.
  8. ^ Tjandra, J. J.; Ramadi, L.; McKenzie, I. F. (December 1990). "Development of human anti-murine antibody (HAMA) response in patients". Immunology and Cell Biology. 68 ( Pt 6) (6): 367–376. doi: 10.1038/icb.1990.50. ISSN  0818-9641. PMID  1711007. S2CID  9138513.
  9. ^ Chames, Patrick; Van Regenmortel, Marc; Weiss, Etienne; Baty, Daniel (May 2009). "Therapeutic antibodies: successes, limitations and hopes for the future". British Journal of Pharmacology. 157 (2): 220–233. doi: 10.1111/j.1476-5381.2009.00190.x. ISSN  0007-1188. PMC  2697811. PMID  19459844.
  10. ^ Lee, Chang-Han; Kang, Tae Hyun; Godon, Ophélie; Watanabe, Makiko; Delidakis, George; Gillis, Caitlin M.; Sterlin, Delphine; Hardy, David; Cogné, Michel; Macdonald, Lynn E.; Murphy, Andrew J. (December 2019). "An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence". Nature Communications. 10 (1): 5031. Bibcode: 2019NatCo..10.5031L. doi: 10.1038/s41467-019-13108-2. ISSN  2041-1723. PMC  6834678. PMID  31695028.
  11. ^ Rosebrough, S. F.; Grossman, Z. D.; McAfee, J. G.; Kudryk, B. J.; Subramanian, G.; Ritter-Hrncirik, C. A.; Witanowski, L. S.; Tillapaugh-Fay, G.; Urrutia, E.; Zapf-Longo, C. (July 1988). "Thrombus imaging with indium-111 and iodine-131-labeled fibrin-specific monoclonal antibody and its F(ab')2 and Fab fragments". Journal of Nuclear Medicine. 29 (7): 1212–1222. ISSN  0161-5505. PMID  3392581.
  12. ^ Murray, J. L.; Rosenblum, M. G.; Lamki, L.; Glenn, H. J.; Krizan, Z.; Hersh, E. M.; Plager, C. E.; Bartholomew, R. M.; Unger, M. W.; Carlo, D. J. (January 1987). "Clinical parameters related to optimal tumor localization of indium-111-labeled mouse antimelanoma monoclonal antibody ZME-018". Journal of Nuclear Medicine. 28 (1): 25–33. ISSN  0161-5505. PMID  3794809.
  13. ^ Deri, Melissa A.; Zeglis, Brian M.; Francesconi, Lynn C.; Lewis, Jason S. (January 2013). "PET Imaging with 89Zr: From Radiochemistry to the Clinic". Nuclear Medicine and Biology. 40 (1): 3–14. doi: 10.1016/j.nucmedbio.2012.08.004. ISSN  0969-8051. PMC  3517725. PMID  22998840.
  14. ^ a b c d Knight, James C; Cornelissen, Bart (2014-03-20). "Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy". American Journal of Nuclear Medicine and Molecular Imaging. 4 (2): 96–113. ISSN  2160-8407. PMC  3992206. PMID  24753979.
  15. ^ a b Reardan, Dayton T.; Meares, Claude F.; Goodwin, David A.; McTigue, Maureen; David, Gary S.; Stone, Mary R.; Leung, Julia P.; Bartholomew, Richard M.; Frincke, James M. (July 1985). "Antibodies against metal chelates". Nature. 316 (6025): 265–268. Bibcode: 1985Natur.316..265R. doi: 10.1038/316265a0. ISSN  0028-0836. PMID  3927170. S2CID  4273142.
  16. ^ Goodwin, D. A.; Mears, C. F.; McTigue, M.; David, G. S. (August 1986). "Monoclonal antibody hapten radiopharmaceutical delivery". Nuclear Medicine Communications. 7 (8): 569–580. doi: 10.1097/00006231-198608000-00002. ISSN  0143-3636. PMID  3095721. S2CID  31950034.
  17. ^ Goodwin, D. A.; Meares, C. F.; McCall, M. J.; McTigue, M.; Chaovapong, W. (February 1988). "Pre-targeted immunoscintigraphy of murine tumors with indium-111-labeled bifunctional haptens". Journal of Nuclear Medicine. 29 (2): 226–234. ISSN  0161-5505. PMID  3346734.
  18. ^ Sharkey, Robert M.; Rossi, Edmund A.; Chang, Chien-Hsing; Goldenberg, David M. (February 2010). "Improved Cancer Therapy and Molecular Imaging with Multivalent, Multispecific Antibodies". Cancer Biotherapy and Radiopharmaceuticals. 25 (1): 1–12. doi: 10.1089/cbr.2009.0690. ISSN  1084-9785. PMC  2883519. PMID  20187791.
  19. ^ Goldenberg, D. M.; Rossi, E. A.; Sharkey, R. M.; McBride, W. J.; Chang, C.-H. (2007-12-12). "Multifunctional Antibodies by the Dock-and-Lock Method for Improved Cancer Imaging and Therapy by Pretargeting". Journal of Nuclear Medicine. 49 (1): 158–163. doi: 10.2967/jnumed.107.046185. ISSN  0161-5505. PMID  18077530. S2CID  32847549.
  20. ^ Goldenberg, David M.; Chatal, Jean-Francois; Barbet, Jacques; Boerman, Otto; Sharkey, Robert M. (March 2007). "Cancer imaging and therapy with bispecific antibody pretargeting". Update on Cancer Therapeutics. 2 (1): 19–31. doi: 10.1016/j.uct.2007.04.003. PMC  2034280. PMID  18311322.
  21. ^ Sharkey, Robert M.; Karacay, Habibe; Goldenberg, David M. (2010). "Improving the treatment of non-Hodgkin lymphoma with antibody-targeted radionuclides". Cancer. 116 (S4): 1134–1145. doi: 10.1002/cncr.24802. ISSN  1097-0142. PMC  2820147. PMID  20127947.
  22. ^ Sharkey, Robert M.; Rossi, Edmund A.; McBride, William J.; Chang, Chien-Hsing; Goldenberg, David M. (May 2010). "Recombinant Bispecific Monoclonal Antibodies Prepared by the Dock-and-Lock Strategy for Pretargeted Radioimmunotherapy". Seminars in Nuclear Medicine. 40 (3): 190–203. doi: 10.1053/j.semnuclmed.2009.12.002. PMC  2855818. PMID  20350628.
  23. ^ Goldenberg, David M.; Chang, Chien-Hsing; Rossi, Edmund A.; J, William; McBride, null; Sharkey, Robert M. (2012). "Pretargeted molecular imaging and radioimmunotherapy". Theranostics. 2 (5): 523–540. doi: 10.7150/thno.3582. ISSN  1838-7640. PMC  3364558. PMID  22737190.
  24. ^ Le Doussal, J. M.; Martin, M.; Gautherot, E.; Delaage, M.; Barbet, J. (August 1989). "In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate". Journal of Nuclear Medicine. 30 (8): 1358–1366. ISSN  0161-5505. PMID  2787847.
  25. ^ Hnatowich, D. J.; Virzi, F.; Rusckowski, M. (August 1987). "Investigations of avidin and biotin for imaging applications". Journal of Nuclear Medicine. 28 (8): 1294–1302. ISSN  0161-5505. PMID  3612292.
  26. ^ Michael Green, N. (1990), "[5] Avidin and streptavidin", Avidin-Biotin Technology, Methods in Enzymology, vol. 184, Elsevier, pp. 51–67, doi: 10.1016/0076-6879(90)84259-j, ISBN  978-0-12-182085-5, PMID  2388586, retrieved 2020-09-30
  27. ^ Boerman, Otto C.; van Schaijk, Frank G.; Oyen, Wim J. G.; Corstens, Frans H. M. (March 2003). "Pretargeted radioimmunotherapy of cancer: progress step by step". Journal of Nuclear Medicine. 44 (3): 400–411. ISSN  0161-5505. PMID  12621007.
  28. ^ Liu, Guozheng; Hnatowich, Donald J. (2008-11-19). "A Semiempirical Model of Tumor Pretargeting". Bioconjugate Chemistry. 19 (11): 2095–2104. doi: 10.1021/bc8002748. ISSN  1043-1802. PMC  2645947. PMID  18839978.
  29. ^ Sharkey, Robert M.; Chang, Chien-Hsing; Rossi, Edmund A.; McBride, William J.; Goldenberg, David M. (June 2012). "Pretargeting: taking an alternate route for localizing radionuclides". Tumor Biology. 33 (3): 591–600. doi: 10.1007/s13277-012-0367-6. ISSN  1010-4283. PMID  22396041. S2CID  16162151.
  30. ^ Sharkey, Robert M.; Goldenberg, David M. (2006-01-01). "Advances in Radioimmunotherapy in the Age of Molecular Engineering and Pretargeting". Cancer Investigation. 24 (1): 82–97. doi: 10.1080/07357900500449553. ISSN  0735-7907. PMID  16466997. S2CID  38314674.
  31. ^ Goldenberg, David M.; Sharkey, Robert M.; Paganelli, Giovanni; Barbet, Jacques; Chatal, Jean-François (2006-02-10). "Antibody Pretargeting Advances Cancer Radioimmunodetection and Radioimmunotherapy". Journal of Clinical Oncology. 24 (5): 823–834. doi: 10.1200/jco.2005.03.8471. ISSN  0732-183X. PMID  16380412.