From Wikipedia, the free encyclopedia
Orientations of Proteins in Membranes
Content
DescriptionThe database provides spatial arrangement of proteins in the lipid bilayer
Data types
captured
Protein structures from the PDB
OrganismsAll
Contact
Research center University of Michigan College of Pharmacy
Primary citation PMID  16397007
Release date2005
Access
Data formatmodified PDB format
Website http://opm.phar.umich.edu
Download URL OPM files
Tools
Web Server for calculating positions of proteins in membranes
Miscellaneous
LicenseCC-BY 3.0
Version2.0
Curation policyCurated

Orientations of Proteins in Membranes (OPM) database provides spatial positions of membrane protein structures with respect to the lipid bilayer. [1] [2] [3] [4] Positions of the proteins are calculated using an implicit solvation model of the lipid bilayer. [5] [6] The results of calculations were verified against experimental studies of spatial arrangement of transmembrane and peripheral proteins in membranes. [4] [7] [8] [9] [10] [11] [12]

Proteins structures are taken from the Protein Data Bank. OPM also provides structural classification of membrane-associated proteins into families and superfamilies, membrane topology, quaternary structure of proteins in membrane-bound state, and the type of a destination membrane for each protein. The coordinate files with calculated membrane boundaries are downloadable. The site allows visualization of protein structures with membrane boundary planes through Jmol.

The database was widely used in experimental and theoretical studies of membrane-associated proteins. [13] [14] [15] [16] [17] However, structures of many membrane-associated proteins are not included in the database if their spatial arrangement in membrane can not be computationally predicted from the three-dimensional structure. This is the case when all membrane-anchoring parts of the proteins ( amphiphilic alpha helices, exposed nonpolar residues, or lipidated amino acid residues) are missing in the experimental structures. [4] The database also does not include lower resolution structures with only main chain atoms provided by the Protein Data Bank. The calculated spatial arrangements of the lower resolution protein structures in the lipid bilayer can be found in other resources, such as PDBTM. [18]

References

  1. ^ ST NetWatch: Protein Databases Archived 2013-06-02 at the Wayback Machine review of OPM in Signal Transduction NetWatch list from Science
  2. ^ Lomize, Mikhail A.; Lomize, Andrei L; Pogozheva, Irina D.; Mosberg, Henry I. (2006). "OPM: Orientations of Proteins in Membranes database" (PDF). Bioinformatics. 22 (5): 623–625. doi: 10.1093/bioinformatics/btk023. PMID  16397007.
  3. ^ Lomize, Andrei L; Pogozheva, Irina D.; Lomize, Mikhail A.; Mosberg, Henry I. (2006). "Positioning of proteins in membranes: A computational approach" (PDF). Protein Science. 15 (6): 1318–1333. doi: 10.1110/ps.062126106. PMC  2242528. PMID  16731967.
  4. ^ a b c Lomize, Andrei L; Pogozheva, Irina D.; Lomize, Mikhail A.; Mosberg, Henry I. (2007). "The role of hydrophobic interactions in positioning of peripheral proteins in membranes" (PDF). BMC Structural Biology. 7 (44): 44. doi: 10.1186/1472-6807-7-44. PMC  1934363. PMID  17603894.
  5. ^ Lomize, AL; Pogozheva, ID; Mosberg, HI (2011). "Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects". Journal of Chemical Information and Modeling. 51 (4): 918–929. doi: 10.1021/ci2000192. PMC  3089899. PMID  21438609.
  6. ^ Lomize, AL; Pogozheva, ID; Mosberg, HI (2011). "Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes". Journal of Chemical Information and Modeling. 51 (4): 930–946. doi: 10.1021/ci200020k. PMC  3091260. PMID  21438606.
  7. ^ Malmberg, Nathan J.; Falke, Joseph J. (2005). "Use of EPR power saturation to analyze the membrane-docking geometries of peripheral proteins: applications to C2 domains". Annu Rev Biophys Biomol Struct. 34: 71–90. doi: 10.1146/annurev.biophys.34.040204.144534. PMC  3637887. PMID  15869384.
  8. ^ Spencer, Andrew G.; Thuresson, Elizabeth; Otto, James C.; Song, Inseok; Smith, Tim; DeWitt, David L.; Garavito, R. Michael; Smith, William L. (1999). "The membrane binding domains of prostaglandin endoperoxide H synthases 1 and 2. Peptide mapping and mutational analysis". J Biol Chem. 274 (46): 32936–32942. doi: 10.1074/jbc.274.46.32936. PMID  10551860.
  9. ^ Lathrop, Brian; Gadd, Martha; Biltonen, Rodney L.; Rule, Gordon S. (2001). "Changes in Ca2+ affinity upon activation of Agkistrodon piscivorus piscivorus phospholipase A2". Biochemistry. 40 (11): 3264–3272. doi: 10.1021/bi001901n. PMID  11258945.
  10. ^ Kutateladze, Tatiana; Overduin, Michael (2001). "Structural Mechanism of Endosome Docking by the FYVE Domain". Science. 291 (5509): 1793–1796. Bibcode: 2001Sci...291.1793K. doi: 10.1126/science.291.5509.1793. PMID  11230696.
  11. ^ Tatulian, Suren A.; Qin, Shan; Pande, Abhay H.; He, Xiaomei (2005). "Positioning membrane proteins by novel protein engineering and biophysical approaches". J Mol Biol. 351 (5): 939–947. doi: 10.1016/j.jmb.2005.06.080. PMID  16055150.
  12. ^ Hristova, Kalina; Wimley, William C.; Mishra, Vinod K.; Anantharamiah, G.M.; Segrest, Jere P.; White, Stephen H. (2 July 1999). "An amphipathic α-helix at a membrane interface: a structural study using a novel X-ray diffraction method". J Mol Biol. 290 (1): 99–117. doi: 10.1006/jmbi.1999.2840. PMID  10388560. S2CID  5704597.
  13. ^ Park, Yungki; Helms, Volkhard (2007). "On the derivation of propensity scales for predicting exposed transmembrane residues of helical membrane proteins". Bioinformatics. 23 (6): 701–708. doi: 10.1093/bioinformatics/btl653. PMID  17237049.
  14. ^ Marsh, Derek; Jost, Micha; Peggion, Cristina; Toniolo, Claudio (2007). "TOAC spin labels in the backbone of alamethicin: EPR studies in lipid membranes". Biophys. J. 92 (2): 473–481. Bibcode: 2007BpJ....92..473M. doi: 10.1529/biophysj.106.092775. PMC  1751395. PMID  17056731.
  15. ^ Punta, Marco; Forrest, Lucy R.; Bigelow, Henry; Kernytsky, Andrew; Liu, Jinfeng; Rost, Burkhard (2007). "Membrane protein prediction methods". Methods. 41 (4): 460–474. doi: 10.1016/j.ymeth.2006.07.026. PMC  1934899. PMID  17367718.
  16. ^ Cherezov, V; Yamashita, E; Liu, W; Zhalnina, M; Cramer, WA; Caffrey, M (8 December 2006). "In Meso Structure of the Cobalamin Transporter, BtuB, at 1.95 Ångstrom Resolution". J. Mol. Biol. 364 (4): 716–734. doi: 10.1016/j.jmb.2006.09.022. PMC  1808586. PMID  17028020.
  17. ^ Páli, Tibor; Bashtovyy, Denys; Marsh, Derek (2006). "Stoichiometry of lipid interactions with transmembrane proteins - Deduced from the 3D structures". Protein Sci. 15 (5): 1153–1161. doi: 10.1110/ps.052021406. PMC  2242517. PMID  16641489.
  18. ^ "PDBTM: Protein Data Bank of Transmembrane Proteins". Archived from the original on 2013-12-25. Retrieved 2007-06-20.