From Wikipedia, the free encyclopedia
Humans are exposed to toxic chemicals and microplastics at all stages in the plastics life cycle

Microplastics effects on human health are a subject of growing concern and an area of research. The tiny particles known as microplastics (MPs), have been found in various environmental and biological matrices, including air, water, food, and human tissues. Microplastics, defined as plastic fragments smaller than 5 mm, and even smaller particles such as nanoplastics (NP), particles smaller than 1000 nm in diameter (0.001 mm or 1 μm), have raised concerns impacting human health. [1] In scientific literature, combined microplastics and nanoplastics are referred to as MNPs or NMPs or NMPPs for nano-and microplastic particles.

Routes of exposure and bioaccumulation

The major routes of exposure include ingestion, skin contact, and inhalation. MNPs can remain in the organ of entry or enter systemic circulation to bioaccumulate in various tissues [2] depending on size. MNPs above 150 μm or 10 μm in diameter do not enter the blood and remain in tissues [3] whereas particles below 200 nm pass through intestinal barriers and reach extracellular spaces. [4]

Ingestion

Direct ingestion includes drinking water, [5] [6] beer, [7] honey and sugar, [8] table salt, [9] [10] and indoor airborne particulates falling on open meals. [11] [12] [13] Indirect ingestion includes toothpaste, face wash, scrubs, [14] [15] and soap [16] [17] and enter systemic circulation.

Contact

This is skin penetration through wounds and pores such as sweat glands and hair follicles [18] as the skin interacts with MNP-contaminated media such as soil or water [19] [20] and cosmetics mentioned above and enter systemic circulation.

Inhalation

This is indoor and outdoor airborne entry into the respiratory system [21] [22] [23] from upholstery and household furniture [24] to urban dust, rubber tires and synthetic fibers. [25] MNPs can remain in the lungs or be ingested via mucociliary clearance [26] to enter the systemic circulation.  

Occupational exposure

Incidental generation of MNPs is mechanical or environmental degradation or industrial processes such as plastic manufacturing (heating and chemical condensation) and intentional generation of MNPs occur during in 3D printing such as multi-jet fusion or power-bed printing.

Acute inhalation is the main route of workplace exposure is acute inhalation. [27] Workplace exposure can be high concentration and lasting the duration of a shift and thus short-term whereas exposure outside of work is at low concentration and long-term. [28] The concentration of worker exposure is orders of magnitude higher than the general population (e.g., 4×1010 particles per m3 from extrusion 3D printers [29] versus 50 particles per m3 in the general environment [30]).

High chronic exposure to aerosolized MNPs occur in: the synthetic textile industry, the flocking industry, and the plastics industry consisting of the Vinyl Chloride supplier and the Polyvinyl Chloride manufacturer. [31]

Manufacturing and processing of plastic

  • 3D printing. Additive Manufacturing such as commercial extrusion printing and multi-jet fusion printing with thermoplastics and resin emit MNPs and organic vapors (Volatile Organic Compounds) into the ambient workplace air. [29] There is emerging evidence of allergic, respiratory, and cardiovascular adverse effects from 3D printing. [32] For extrusion printing Acrylonitrile butadiene styrene (ABS) filaments emit more MNPs than Polylactic acid (PLA) filaments. [33]
  • Nylon flocking is the process of applying, cutting, sanding and machining of nylon polymers on surfaces where dust emission peaks during air blowing flocked surfaces. [34]
  • Coating utensils and cookware: polytetrafluoroethylene, and high energy or heat processing of plastic products (Bello et al. 2010; Walter et al. 2015).
  • Dust generation occurs in a wide range of settings from composite material machining, [35] drilling, [36] hand-held grinding, [37] and sanding of nanotube-containing composites, [38] and sanding of dental composites, [39] and cutting PVC piping and plastics. [40]
  • PVC and plastic production produces PVC dust [41] [42] with mortality confirmed among vinyl and polyvinyl chloride workers after reanalysis of data [43] and coronary artery disease and cancer death among vinyl chloride exposed workers [44]
  • Rubber chemical manufacturing impacting mortality among these workers. [45]

Environmental and mechanical degradation of plastic

  • Carpet and synthetic fibers: indoor air contains high concentrations of degraded synthetic fibers with potential exposure to office workers and custodial staff; settled dust is ingested by adults, and particularly children. [46]
  • Wastewater management, recycling facilities, and landfills: plastic goods undergo environmental (weathering) and mechanical degradation and wastewater management [47] [48] [49] and recycling facilities [50] [51] and landfills [52] serve as a reservoirs of particulates workers may potentially be exposed to.

Medical plastic

  • Face masks and respirators: globally up to 7 billion facemasks which amounts to 21,000 tons of synthetic polymer, were estimated to be used daily during the COVID-19 pandemic [53] increasing plastic demand and waste. [54] It is yet unknown if respirable NMP debris on the surface of facemasks poses adverse health effects. [55]
  • Medical plastics include a wide range of products from bags to pharmaceutical containers that leach and expose patients and healthcare workers to MNPs. [56] Further research is needed to assess toxicology and medical significance of MNPs from medical plastics.
Microplastics per square meter in the EU sewage sludge (2015–2019) [57]

Potential health risks

One of many routes humans are exposed to microplastics is via dermal contact which allows MPs penetration through skin pores [58]

The potential health impacts of microplastics vary based on factors, such as their particle sizes, shape, exposure time, chemical composition (enriched with heavy metals, polycyclic aromatic hydrocarbons (PAHs), etc.), surface properties, and associated contaminants. [59] [60] Experimental and observational studies in mammals have suggested that microplastics and nanoplastics exposure may have adverse effects on human health, such as:

Laboratory investigations demonstrate that microplastics can damage human cells, triggering allergic reactions and cell death. [79] MPs may also disrupt hormone function, potentially contributing to weight gain. [80] [81]

Epidemiological studies

Despite growing concern and evidence, most epidemiologic studies have focused on characterizing exposures. Epidemiological studies directly linking microplastics to adverse health effects in humans remain yet limited and research is ongoing to determine the full extent of potential harm caused by microplastics and their long-term impact on human health. [82] [83]

Clinical studies

In a cohort study involving 304 patients who were undergoing carotid endarterectomy for asymptomatic carotid artery disease in 3 Italian hospitals, polyethylene was detected in carotid artery plaque of 150 patients (58.4%) with a mean level of 21.7±24.5 μg per milligram of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 5.2±2.4 μg per milligram of plaque. Those with carotid artery plaque in which MNPs were detected had a higher risk of a composite of myocardial infarction, stroke, or death from any cause at 34 months of follow-up than those in whom MNPs were not detected. [84]

Mitigating inhalation exposure to MNPs

Also see Health and safety hazards of nanomaterials.

As April 2024, there is no established NIOSH Recommended Exposure Limit (REL) for MNPs due to limited data on exposure levels to adverse health effects, the absence of standardization to characterize the heterogeneity of MNPs by chemical composition and morphology, and difficulty in measuring airborne MNPs. [85] [86] And thus, safety measures focus on the hierarchy of controls for nanomaterials with good industrial hygiene to implement source emission control with local exhaust ventilation, air filtration, and nonventilating engineering controls such as substitution with less hazardous materials, administrative controls, Personal Protective Equipment (PPE) for skin and respiratory protection. [87]

Research from the U.S. National Institute of Occupational Safety and Health (NIOSH) Nanotechnology Research Center (NTRC) show local exhaust ventilation and High Efficiency Particulate Air (HEPA) filtration to be effective mitigation to theoretically filter 99.97% of nanoparticles down to 0.3 microns [87].                       

See also

References

  1. ^ Amobonye, Ayodeji; Bhagwat, Prashant; Raveendran, Sindhu; Singh, Suren; Pillai, Santhosh (2021-12-15). "Environmental Impacts of Microplastics and Nanoplastics: A Current Overview". Frontiers in Microbiology. 12: 768297. doi: 10.3389/fmicb.2021.768297. ISSN  1664-302X. PMC  8714882. PMID  34975796.
  2. ^ Yee, Maxine Swee-Li; Hii, Ling-Wei; Looi, Chin King; Lim, Wei-Meng; Wong, Shew-Fung; Kok, Yih-Yih; Tan, Boon-Keat; Wong, Chiew-Yen; Leong, Chee-Onn (2021-02-16). "Impact of Microplastics and Nanoplastics on Human Health". Nanomaterials. 11 (2): 496. doi: 10.3390/nano11020496. ISSN  2079-4991. PMC  7920297. PMID  33669327.
  3. ^ "Microplastics in drinking-water". www.who.int. Retrieved 2024-04-24.
  4. ^ Liang, Boxuan; Zhong, Yizhou; Huang, Yuji; Lin, Xi; Liu, Jun; Lin, Li; Hu, Manjiang; Jiang, Junying; Dai, Mingzhu; Wang, Bo; Zhang, Bingli; Meng, Hao; Lelaka, Jesse Justin J.; Sui, Haixia; Yang, Xingfen (2021-06-07). "Underestimated health risks: polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis". Particle and Fibre Toxicology. 18 (1): 20. doi: 10.1186/s12989-021-00414-1. ISSN  1743-8977. PMC  8186235. PMID  34098985.
  5. ^ "World Health Organization (WHO). Information sheet: Microplastics in drinking-water". World Health Organization (WHO). Information sheet: Microplastics in drinking-water.
  6. ^ Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. (January 2019). "Low numbers of microplastics detected in drinking water from ground water sources". Science of the Total Environment. 648: 631–635. Bibcode: 2019ScTEn.648..631M. doi: 10.1016/j.scitotenv.2018.08.178. hdl: 1874/377880. ISSN  0048-9697. PMID  30121540.
  7. ^ Liebezeit, Gerd; Liebezeit, Elisabeth (2014-09-02). "Synthetic particles as contaminants in German beers". Food Additives & Contaminants: Part A. 31 (9): 1574–1578. doi: 10.1080/19440049.2014.945099. ISSN  1944-0049. PMID  25056358.
  8. ^ Liebezeit, Gerd; Liebezeit, Elisabeth (December 2013). "Non-pollen particulates in honey and sugar". Food Additives & Contaminants: Part A. 30 (12): 2136–2140. doi: 10.1080/19440049.2013.843025. ISSN  1944-0049. PMID  24160778.
  9. ^ Yang, Dongqi; Shi, Huahong; Li, Lan; Li, Jiana; Jabeen, Khalida; Kolandhasamy, Prabhu (2015-11-17). "Microplastic Pollution in Table Salts from China". Environmental Science & Technology. 49 (22): 13622–13627. Bibcode: 2015EnST...4913622Y. doi: 10.1021/acs.est.5b03163. ISSN  0013-936X. PMID  26486565.
  10. ^ Iñiguez, Maria E.; Conesa, Juan A.; Fullana, Andres (2017-08-17). "Microplastics in Spanish Table Salt". Scientific Reports. 7 (1): 8620. Bibcode: 2017NatSR...7.8620I. doi: 10.1038/s41598-017-09128-x. ISSN  2045-2322. PMC  5561224. PMID  28819264.
  11. ^ Enyoh, Christian Ebere; Verla, Andrew Wirnkor; Verla, Evelyn Ngozi; Ibe, Francis Chizoruo; Amaobi, Collins Emeka (November 2019). "Airborne microplastics: a review study on method for analysis, occurrence, movement and risks". Environmental Monitoring and Assessment. 191 (11): 668. Bibcode: 2019EMnAs.191..668E. doi: 10.1007/s10661-019-7842-0. ISSN  0167-6369. PMID  31650348.
  12. ^ Enyoh, Christian Ebere; Verla, Andrew Wirnkor; Verla, Evelyn Ngozi; Ibe, Francis Chizoruo; Amaobi, Collins Emeka (2019-10-24). "Airborne microplastics: a review study on method for analysis, occurrence, movement and risks". Environmental Monitoring and Assessment. 191 (11): 668. Bibcode: 2019EMnAs.191..668E. doi: 10.1007/s10661-019-7842-0. ISSN  1573-2959. PMID  31650348.
  13. ^ Catarino, Ana I.; Macchia, Valeria; Sanderson, William G.; Thompson, Richard C.; Henry, Theodore B. (June 2018). "Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal". Environmental Pollution. 237: 675–684. Bibcode: 2018EPoll.237..675C. doi: 10.1016/j.envpol.2018.02.069. hdl: 10026.1/11254. PMID  29604577.
  14. ^ Kau, B. (2018). "For the first time, study confirms presence of microplastics in Indian cosmetics". downtoearth.org.
  15. ^ Leslie, HA (2014). "Review of microplastics in cosmetics". IVM Institute for Environmental Studies. 476: 1–33.
  16. ^ "Plastic Cosmetics: Are We Polluting the Environment Through our Personal Care?". United Nations Environment Programme.
  17. ^ Anderson, A.G.; Grose, J.; Pahl, S.; Thompson, R.C.; Wyles, K.J. (15 December 2016). "Microplastics in personal care products: Exploring perceptions of environmentalists, beauticians and students". Marine Pollution Bulletin. 113 (1–2): 454–460. Bibcode: 2016MarPB.113..454A. doi: 10.1016/j.marpolbul.2016.10.048. ISSN  0025-326X. PMID  27836135.
  18. ^ Yee, Maxine Swee-Li; Hii, Ling-Wei; Looi, Chin King; Lim, Wei-Meng; Wong, Shew-Fung; Kok, Yih-Yih; Tan, Boon-Keat; Wong, Chiew-Yen; Leong, Chee-Onn (2021-02-16). "Impact of Microplastics and Nanoplastics on Human Health". Nanomaterials. 11 (2): 496. doi: 10.3390/nano11020496. ISSN  2079-4991. PMC  7920297. PMID  33669327.
  19. ^ Allen, Steve; Allen, Deonie; Phoenix, Vernon R.; Le Roux, Gaël; Durántez Jiménez, Pilar; Simonneau, Anaëlle; Binet, Stéphane; Galop, Didier (May 2019). "Atmospheric transport and deposition of microplastics in a remote mountain catchment". Nature Geoscience. 12 (5): 339–344. Bibcode: 2019NatGe..12..339A. doi: 10.1038/s41561-019-0335-5. ISSN  1752-0908.
  20. ^ Dris, Rachid; Gasperi, Johnny; Saad, Mohamed; Mirande, Cécile; Tassin, Bruno (March 2016). "Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?". Marine Pollution Bulletin. 104 (1–2): 290–293. Bibcode: 2016MarPB.104..290D. doi: 10.1016/j.marpolbul.2016.01.006. PMID  26787549.
  21. ^ Enyoh Christian Ebere; Verla, Andrew Wirnkor (5 June 2019). We are breathing Plastic; Don't Just Look down, Look up. 3rd IMSU World Environment Day International Conference. doi: 10.13140/RG.2.2.21027.91680.
  22. ^ Enyoh, Christian Ebere; Verla, Andrew Wirnkor; Verla, Evelyn Ngozi; Ibe, Francis Chizoruo; Amaobi, Collins Emeka (2019-10-24). "Airborne microplastics: a review study on method for analysis, occurrence, movement and risks". Environmental Monitoring and Assessment. 191 (11): 668. Bibcode: 2019EMnAs.191..668E. doi: 10.1007/s10661-019-7842-0. ISSN  1573-2959. PMID  31650348.
  23. ^ Enyoh, Christian Ebere; Shafea, Leila; Verla, Andrew Wirnkor; Verla, Evelyn Ngozi; Qingyue, Wang; Chowdhury, Tanzin; Paredes, Marcel (2020-03-25). "Microplastics Exposure Routes and Toxicity Studies to Ecosystems: An Overview". Environmental Analysis Health and Toxicology. 35 (1): e2020004. doi: 10.5620/eaht.e2020004. ISSN  2671-9525. PMC  7308665. PMID  32570999.
  24. ^ Facciolà, Alessio; Visalli, Giuseppa; Pruiti Ciarello, Marianna; Di Pietro, Angela (2021-03-15). "Newly Emerging Airborne Pollutants: Current Knowledge of Health Impact of Micro and Nanoplastics". International Journal of Environmental Research and Public Health. 18 (6): 2997. doi: 10.3390/ijerph18062997. ISSN  1660-4601. PMC  7998604. PMID  33803962.
  25. ^ Yee, Maxine Swee-Li; Hii, Ling-Wei; Looi, Chin King; Lim, Wei-Meng; Wong, Shew-Fung; Kok, Yih-Yih; Tan, Boon-Keat; Wong, Chiew-Yen; Leong, Chee-Onn (2021-02-16). "Impact of Microplastics and Nanoplastics on Human Health". Nanomaterials. 11 (2): 496. doi: 10.3390/nano11020496. ISSN  2079-4991. PMC  7920297. PMID  33669327.
  26. ^ Murashov, Vladimir; Geraci, Charles L.; Schulte, Paul A.; Howard, John (2021-11-02). "Nano- and microplastics in the workplace". Journal of Occupational and Environmental Hygiene. 18 (10–11): 489–494. doi: 10.1080/15459624.2021.1976413. ISSN  1545-9624. PMC  10020928. PMID  34478348.
  27. ^ Murashov, Vladimir; Geraci, Charles L.; Schulte, Paul A.; Howard, John (2021-11-02). "Nano- and microplastics in the workplace". Journal of Occupational and Environmental Hygiene. 18 (10–11): 489–494. doi: 10.1080/15459624.2021.1976413. ISSN  1545-9624. PMC  10020928. PMID  34478348.
  28. ^ "Exposome and Exposomics". www.cdc.gov/niosh. June 1, 2021. Archived from the original on September 9, 2023. Retrieved June 1, 2021.
  29. ^ a b Stefaniak, A.B.; Johnson, A.R.; du Preez, S.; Hammond, D.R.; Wells, J.R.; Ham, J.E.; LeBouf, R.F.; Martin, S.B.; Duling, M.G.; Bowers, L.N.; Knepp, A.K.; de Beer, D.J.; du Plessis, J.L. (June 2019). "Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines". Safety and Health at Work. 10 (2): 229–236. doi: 10.1016/j.shaw.2018.10.003. PMC  6598813. PMID  31297287.
  30. ^ Dris, Rachid; Gasperi, Johnny; Mirande, Cécile; Mandin, Corinne; Guerrouache, Mohamed; Langlois, Valérie; Tassin, Bruno (February 2017). "A first overview of textile fibers, including microplastics, in indoor and outdoor environments". Environmental Pollution. 221: 453–458. Bibcode: 2017EPoll.221..453D. doi: 10.1016/j.envpol.2016.12.013. ISSN  0269-7491. PMID  27989388.
  31. ^ Prata, Joana Correia (2018-03-01). "Airborne microplastics: Consequences to human health?". Environmental Pollution. 234: 115–126. Bibcode: 2018EPoll.234..115P. doi: 10.1016/j.envpol.2017.11.043. ISSN  0269-7491. PMID  29172041.
  32. ^ Chan, F. L.; House, R.; Kudla, I.; Lipszyc, J. C.; Rajaram, N.; Tarlo, S. M. (2018). "Health survey of employees regularly using 3D printers". Occupational Medicine. 68 (3): 211–214. doi: 10.1093/occmed/kqy042. PMID  29538712. Retrieved 2024-04-20.
  33. ^ Azimi, Parham; Zhao, Dan; Pouzet, Claire; Crain, Neil E.; Stephens, Brent (2016-02-02). "Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments". Environmental Science & Technology. 50 (3): 1260–1268. Bibcode: 2016EnST...50.1260A. doi: 10.1021/acs.est.5b04983. ISSN  0013-936X. PMID  26741485.
  34. ^ Joseph Burkhart, Chris Piacitelli (1999-04-15). "Environmental Study of Nylon Flocking Process". Journal of Toxicology and Environmental Health, Part A. 57 (1): 1–23. Bibcode: 1999JTEHA..57....1J. doi: 10.1080/009841099157836. ISSN  1528-7394. PMID  10321899.
  35. ^ Ding, Yaobo; Wohlleben, Wendel; Boland, Mael; Vilsmeier, Klaus; Riediker, Michael (2017-11-10). "Nano-object Release During Machining of Polymer-Based Nanocomposites Depends on Process Factors and the Type of Nanofiller". Annals of Work Exposures and Health. 61 (9): 1132–1144. doi: 10.1093/annweh/wxx081. ISSN  2398-7308. PMID  29136418.
  36. ^ Starost, Kristof; Njuguna, James (2014-08-22). "A review on the effect of mechanical drilling on polymer nanocomposites". IOP Conference Series: Materials Science and Engineering. 64 (1): 012031. Bibcode: 2014MS&E...64a2031S. doi: 10.1088/1757-899X/64/1/012031. hdl: 10059/1104. ISSN  1757-8981.
  37. ^ Zimmer, A. T.; Maynard, A. D. (November 2002). "Investigation of the Aerosols Produced by a High-speed, Hand-held Grinder Using Various Substrates". The Annals of Occupational Hygiene. 46 (8): 663–672. doi: 10.1093/annhyg/mef089. ISSN  1475-3162. PMID  12406860.
  38. ^ Kang, J.; Erdely, A.; Afshari, A.; Casuccio, G.; Bunker, K.; Lersch, T.; Dahm, M. M.; Farcas, D.; Cena, L. (2017-01-01). "Generation and characterization of aerosols released from sanding composite nanomaterials containing carbon nanotubes". NanoImpact. 5: 41–50. doi: 10.1016/j.impact.2016.12.006. ISSN  2452-0748.
  39. ^ Shin, Nara; Drapcho, Jessica; Aich, Nirupam; Guha, Upoma; Tsai, Candace Su-Jung (November 2020). "Quantification and characterization of nanometer-sized particles released from dental composite products using a multimodal approach". Journal of Nanoparticle Research. 22 (11): 345. Bibcode: 2020JNR....22..345S. doi: 10.1007/s11051-020-05078-0. ISSN  1388-0764.
  40. ^ Luo, Yunlong; Al Amin, Md; Gibson, Christopher T.; Chuah, Clarence; Tang, Youhong; Naidu, Ravi; Fang, Cheng (April 2022). "Raman imaging of microplastics and nanoplastics generated by cutting PVC pipe". Environmental Pollution. 298: 118857. Bibcode: 2022EPoll.29818857L. doi: 10.1016/j.envpol.2022.118857. PMID  35033619.
  41. ^ Soutar, C A; Copland, L H; Thornley, P E; Hurley, J F; Ottery, J; Adams, W G; Bennett, B (1980-09-01). "Epidemiological study of respiratory disease in workers exposed to polyvinylchloride dust". Thorax. 35 (9): 644–652. doi: 10.1136/thx.35.9.644. ISSN  0040-6376. PMC  471355. PMID  7444838.
  42. ^ Mastrangelo, G; Saia, B; Marcer, G; Piazza, G (October 1981). "Epidemiological study of pneumoconiosis in the Italian poly(vinyl chloride) industry". Environmental Health Perspectives. 41: 153–157. doi: 10.1289/ehp.8141153. ISSN  0091-6765. PMC  1568843. PMID  7333233.
  43. ^ Gennaro, Valerio; Ceppi, Marcello; Crosignani, Paolo; Montanaro, Fabio (December 2008). "Reanalysis of updated mortality among vinyl and polyvinyl chloride workers: Confirmation of historical evidence and new findings". BMC Public Health. 8 (1): 21. doi: 10.1186/1471-2458-8-21. ISSN  1471-2458. PMC  2262888. PMID  18211695.
  44. ^ Carreón, Tania; Hein, Misty J.; Hanley, Kevin W.; Viet, Susan M.; Ruder, Avima M. (April 2014). "Coronary artery disease and cancer mortality in a cohort of workers exposed to vinyl chloride, carbon disulfide, rotating shift work, and o -toluidine at a chemical manufacturing plant". American Journal of Industrial Medicine. 57 (4): 398–411. doi: 10.1002/ajim.22299. ISSN  0271-3586. PMC  4512282. PMID  24464642.
  45. ^ Prince, Mary M.; Ward, Elizabeth M.; Ruder, Avima M.; Salvan, Alberto; Roberts, Dennis R. (June 2000). "Mortality among rubber chemical manufacturing workers". American Journal of Industrial Medicine. 37 (6): 590–598. doi: 10.1002/(SICI)1097-0274(200006)37:6<590::AID-AJIM3>3.0.CO;2-8. ISSN  0271-3586. PMID  10797502.
  46. ^ Dris, Rachid; Gasperi, Johnny; Mirande, Cécile; Mandin, Corinne; Guerrouache, Mohamed; Langlois, Valérie; Tassin, Bruno (February 2017). "A first overview of textile fibers, including microplastics, in indoor and outdoor environments". Environmental Pollution. 221: 453–458. Bibcode: 2017EPoll.221..453D. doi: 10.1016/j.envpol.2016.12.013. ISSN  0269-7491. PMID  27989388.
  47. ^ Gatidou, Georgia; Arvaniti, Olga S.; Stasinakis, Athanasios S. (April 2019). "Review on the occurrence and fate of microplastics in Sewage Treatment Plants". Journal of Hazardous Materials. 367: 504–512. doi: 10.1016/j.jhazmat.2018.12.081. ISSN  0304-3894. PMID  30620926.
  48. ^ Sun, Jing; Dai, Xiaohu; Wang, Qilin; van Loosdrecht, Mark C.M.; Ni, Bing-Jie (April 2019). "Microplastics in wastewater treatment plants: Detection, occurrence and removal". Water Research. 152: 21–37. Bibcode: 2019WatRe.152...21S. doi: 10.1016/j.watres.2018.12.050. hdl: 10072/386077. ISSN  0043-1354. PMID  30660095.
  49. ^ Enfrin, Marie; Dumée, Ludovic F.; Lee, Judy (September 2019). "Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions". Water Research. 161: 621–638. Bibcode: 2019WatRe.161..621E. doi: 10.1016/j.watres.2019.06.049. ISSN  0043-1354. PMID  31254888.
  50. ^ Suzuki, Go; Uchida, Natsuyo; Tuyen, Le Huu; Tanaka, Kosuke; Matsukami, Hidenori; Kunisue, Tatsuya; Takahashi, Shin; Viet, Pham Hung; Kuramochi, Hidetoshi; Osako, Masahiro (June 2022). "Mechanical recycling of plastic waste as a point source of microplastic pollution". Environmental Pollution. 303: 119114. Bibcode: 2022EPoll.30319114S. doi: 10.1016/j.envpol.2022.119114. ISSN  0269-7491. PMID  35276247.
  51. ^ Stapleton, Michael J.; Ansari, Ashley J.; Ahmed, Aziz; Hai, Faisal I. (December 2023). "Evaluating the generation of microplastics from an unlikely source: The unintentional consequence of the current plastic recycling process". Science of the Total Environment. 902: 166090. Bibcode: 2023ScTEn.902p6090S. doi: 10.1016/j.scitotenv.2023.166090. ISSN  0048-9697. PMID  37553052.
  52. ^ Facciolà, Alessio; Visalli, Giuseppa; Pruiti Ciarello, Marianna; Di Pietro, Angela (2021-03-15). "Newly Emerging Airborne Pollutants: Current Knowledge of Health Impact of Micro and Nanoplastics". International Journal of Environmental Research and Public Health. 18 (6): 2997. doi: 10.3390/ijerph18062997. ISSN  1660-4601. PMC  7998604. PMID  33803962.
  53. ^ Hantoko, Dwi; Li, Xiaodong; Pariatamby, Agamuthu; Yoshikawa, Kunio; Horttanainen, Mika; Yan, Mi (May 2021). "Challenges and practices on waste management and disposal during COVID-19 pandemic". Journal of Environmental Management. 286: 112140. doi: 10.1016/j.jenvman.2021.112140. PMC  7869705. PMID  33652254.
  54. ^ Lau, Winnie W. Y.; Shiran, Yonathan; Bailey, Richard M.; Cook, Ed; Stuchtey, Martin R.; Koskella, Julia; Velis, Costas A.; Godfrey, Linda; Boucher, Julien; Murphy, Margaret B.; Thompson, Richard C.; Jankowska, Emilia; Castillo Castillo, Arturo; Pilditch, Toby D.; Dixon, Ben (2020-09-18). "Evaluating scenarios toward zero plastic pollution". Science. 369 (6510): 1455–1461. Bibcode: 2020Sci...369.1455L. doi: 10.1126/science.aba9475. hdl: 10026.1/16767. ISSN  0036-8075. PMID  32703909.
  55. ^ Han, Jie; He, Shanshan (January 2021). "Need for assessing the inhalation of micro(nano)plastic debris shed from masks, respirators, and home-made face coverings during the COVID-19 pandemic". Environmental Pollution. 268 (Pt B): 115728. Bibcode: 2021EPoll.26815728H. doi: 10.1016/j.envpol.2020.115728. PMC  7537728. PMID  33065479.
  56. ^ Gopinath, Ponnusamy Manogaran; Parvathi, Venkatachalam Deepa; Yoghalakshmi, Nagarajan; Kumar, Srinivasan Madhan; Athulya, Pazhamthavalathil Anil; Mukherjee, Amitava; Chandrasekaran, Natarajan (September 2022). "Plastic particles in medicine: A systematic review of exposure and effects to human health". Chemosphere. 303 (Pt 3): 135227. Bibcode: 2022Chmsp.30335227G. doi: 10.1016/j.chemosphere.2022.135227. ISSN  0045-6535. PMID  35671817.
  57. ^ Lofty, J.; Muhawenimana, V.; Wilson, C. A. M. E.; Ouro, P. (2022-07-01). "Microplastics removal from a primary settler tank in a wastewater treatment plant and estimations of contamination onto European agricultural land via sewage sludge recycling". Environmental Pollution. 304: 119198. Bibcode: 2022EPoll.30419198L. doi: 10.1016/j.envpol.2022.119198. ISSN  0269-7491. PMID  35341817.
  58. ^ a b Enyoh, Christian Ebere; Shafea, Leila; Verla, Andrew Wirnkor; Verla, Evelyn Ngozi; Qingyue, Wang; Chowdhury, Tanzin; Paredes, Marcel (2020-03-31). "Microplastics Exposure Routes and Toxicity Studies to Ecosystems: An Overview". Environmental Analysis, Health and Toxicology. 35 (1): e2020004. doi: 10.5620/eaht.e2020004. ISSN  2671-9525. PMC  7308665. PMID  32570999.
  59. ^ Saeed, Mohammad Sadiq; Fahd, Faisal; Khan, Faisal; Chen, Bing; Sadiq, Rehan (2023-10-15). "Human health risk model for microplastic exposure in the Arctic region". Science of the Total Environment. 895: 165150. Bibcode: 2023ScTEn.895p5150S. doi: 10.1016/j.scitotenv.2023.165150. ISSN  0048-9697. PMID  37385486. S2CID  259294427.
  60. ^ a b c Banerjee, Amrita; Shelver, Weilin L. (2021-02-10). "Micro- and nanoplastic induced cellular toxicity in mammals: A review". Science of the Total Environment. 755 (Pt 2): 142518. Bibcode: 2021ScTEn.755n2518B. doi: 10.1016/j.scitotenv.2020.142518. ISSN  0048-9697. PMID  33065507. S2CID  223547902.
  61. ^ a b c Zhao, Bosen; Rehati, Palizhati; Yang, Zhu; Cai, Zongwei; Guo, Caixia; Li, Yanbo (2024-02-20). "The potential toxicity of microplastics on human health". Science of the Total Environment. 912: 168946. Bibcode: 2024ScTEn.912p8946Z. doi: 10.1016/j.scitotenv.2023.168946. ISSN  0048-9697. PMID  38043812. S2CID  265562120.
  62. ^ Caputi, Sergio; Diomede, Francesca; Lanuti, Paola; Marconi, Guya Diletta; Di Carlo, Piero; Sinjari, Bruna; Trubiani, Oriana (2022-06-24). "Microplastics Affect the Inflammation Pathway in Human Gingival Fibroblasts: A Study in the Adriatic Sea". International Journal of Environmental Research and Public Health. 19 (13): 7782. doi: 10.3390/ijerph19137782. ISSN  1661-7827. PMC  9266176. PMID  35805437.
  63. ^ Gaspar, Lauren; Bartman, Sydney; Coppotelli, Giuseppe; Ross, Jaime M. (2023-08-01). "Acute Exposure to Microplastics Induced Changes in Behavior and Inflammation in Young and Old Mice". International Journal of Molecular Sciences. 24 (15): 12308. doi: 10.3390/ijms241512308. ISSN  1422-0067. PMC  10418951. PMID  37569681.
  64. ^ a b Hirt, Nell; Body-Malapel, Mathilde (2020-11-12). "Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature". Particle and Fibre Toxicology. 17 (1): 57. doi: 10.1186/s12989-020-00387-7. ISSN  1743-8977. PMC  7661204. PMID  33183327.
  65. ^ Hu, Moyan; Palić, Dušan (2020-10-01). "Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways". Redox Biology. 37: 101620. doi: 10.1016/j.redox.2020.101620. ISSN  2213-2317. PMC  7767742. PMID  32863185.
  66. ^ a b c Danopoulos, Evangelos; Twiddy, Maureen; West, Robert; Rotchell, Jeanette M. (2022-04-05). "A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells". Journal of Hazardous Materials. 427: 127861. doi: 10.1016/j.jhazmat.2021.127861. ISSN  0304-3894. PMID  34863566. S2CID  244649738.
  67. ^ a b Tagorti, Ghada; Kaya, Bülent (2022-01-01). "Genotoxic effect of microplastics and COVID-19: The hidden threat". Chemosphere. 286 (Pt 3): 131898. Bibcode: 2022Chmsp.28631898T. doi: 10.1016/j.chemosphere.2021.131898. ISSN  0045-6535. PMID  34411929.
  68. ^ Marfella, Raffaele; et al. (2024). "Microplastics and Nanoplastics in Atheromas and Cardiovascular Events". New England Journal of Medicine. 390 (10): 900–910. doi: 10.1056/nejmoa2309822. PMC 11009876. PMID  38446676.
  69. ^ Carreón, Tania; Hein, Misty J.; Hanley, Kevin W.; Viet, Susan M.; Ruder, Avima M. (April 2014). "Coronary artery disease and cancer mortality in a cohort of workers exposed to vinyl chloride, carbon disulfide, rotating shift work, and o -toluidine at a chemical manufacturing plant". American Journal of Industrial Medicine. 57 (4): 398–411. doi: 10.1002/ajim.22299. ISSN  0271-3586. PMC  4512282. PMID  24464642.
  70. ^ Marfella, Raffaele; et al. (2024). "Microplastics and Nanoplastics in Atheromas and Cardiovascular Events". New England Journal of Medicine. 390 (10): 900–910. doi: 10.1056/NEJMoa2309822. PMC 11009876. PMID  38446676.
  71. ^ Soutar, C A; Copland, L H; Thornley, P E; Hurley, J F; Ottery, J; Adams, W G; Bennett, B (1980-09-01). "Epidemiological study of respiratory disease in workers exposed to polyvinylchloride dust". Thorax. 35 (9): 644–652. doi: 10.1136/thx.35.9.644. ISSN  0040-6376. PMC  471355. PMID  7444838.
  72. ^ Roursgaard, Martin; Hezareh Rothmann, Monika; Schulte, Juliane; Karadimou, Ioanna; Marinelli, Elena; Møller, Peter (2022-07-06). "Genotoxicity of Particles From Grinded Plastic Items in Caco-2 and HepG2 Cells". Frontiers in Public Health. 10: 906430. doi: 10.3389/fpubh.2022.906430. ISSN  2296-2565. PMC  9298925. PMID  35875006.
  73. ^ a b c d e f g Ullah, Sana; Ahmad, Shahid; Guo, Xinle; Ullah, Saleem; Ullah, Sana; Nabi, Ghulam; Wanghe, Kunyuan (2023-01-16). "A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals". Frontiers in Endocrinology. 13: 1084236. doi: 10.3389/fendo.2022.1084236. ISSN  1664-2392. PMC  9885170. PMID  36726457.
  74. ^ Molina, Elena; Benedé, Sara (2022-06-28). "Is There Evidence of Health Risks From Exposure to Micro- and Nanoplastics in Foods?". Frontiers in Nutrition. 9: 910094. doi: 10.3389/fnut.2022.910094. ISSN  2296-861X. PMC  9274238. PMID  35836585.
  75. ^ Cortés-Arriagada, Diego; Ortega, Daniela E.; Miranda-Rojas, Sebastián (2023-02-15). "Mechanistic insights into the adsorption of endocrine disruptors onto polystyrene microplastics in water". Environmental Pollution. 319: 121017. Bibcode: 2023EPoll.31921017C. doi: 10.1016/j.envpol.2023.121017. ISSN  0269-7491. PMID  36610654. S2CID  255502169.
  76. ^ Keller, Maura (2023-04-10). "Tiny Particles, Huge Problems - The Impact of Microplastics". Cancer Wellness. Retrieved 2024-02-29.
  77. ^ "Two studies associate microplastic exposure with cancer | Food Packaging Forum". www.foodpackagingforum.org. 2023-10-16. Retrieved 2024-02-29.
  78. ^ Shi, Chunzhen; Han, Xiaohong; Guo, Wei; Wu, Qi; Yang, Xiaoxi; Wang, Yuanyuan; Tang, Gang; Wang, Shunhao; Wang, Ziniu; Liu, Yaquan; Li, Min; Lv, Meilin; Guo, Yunhe; Li, Zikang; Li, Junya (2022-06-01). "Disturbed Gut-Liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance". Environment International. 164: 107273. Bibcode: 2022EnInt.16407273S. doi: 10.1016/j.envint.2022.107273. ISSN  0160-4120. PMID  35526298.
  79. ^ Carrington, Damian (2021-12-08). "Microplastics cause damage to human cells, study shows". The Guardian. ISSN  0261-3077. Retrieved 2024-02-29.
  80. ^ "Microplastics May Increase Risk for Obesity". Global Environmental Health Newsletter. Retrieved 2024-02-29.
  81. ^ Matei, Adrienne (2023-04-07). "Plastics touching our food may be making us gain weight". The Guardian. ISSN  0261-3077. Retrieved 2024-02-29.
  82. ^ Lee, Yongjin; Cho, Jaelim; Sohn, Jungwoo; Kim, Changsoo (2023). "Health Effects of Microplastic Exposures: Current Issues and Perspectives in South Korea". Yonsei Medical Journal. 64 (5): 301–308. doi: 10.3349/ymj.2023.0048. ISSN  0513-5796. PMC  10151227. PMID  37114632.
  83. ^ Li, Yue; Tao, Le; Wang, Qiong; Wang, Fengbang; Li, Gang; Song, Maoyong (2023-10-20). "Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects". Environment & Health. 1 (4): 249–257. doi: 10.1021/envhealth.3c00052. ISSN  2833-8278.
  84. ^ Marfella, Raffaele; Prattichizzo, Francesco; Sardu, Celestino; Fulgenzi, Gianluca; Graciotti, Laura; Spadoni, Tatiana; D’Onofrio, Nunzia; Scisciola, Lucia; La Grotta, Rosalba; Frigé, Chiara; Pellegrini, Valeria; Municinò, Maurizio; Siniscalchi, Mario; Spinetti, Fabio; Vigliotti, Gennaro (2024-03-07). "Microplastics and Nanoplastics in Atheromas and Cardiovascular Events". New England Journal of Medicine. 390 (10): 900–910. doi: 10.1056/NEJMoa2309822. ISSN  0028-4793. PMC 11009876. PMID  38446676.
  85. ^ Eberhard, Tiffany; Casillas, Gaston; Zarus, Gregory M.; Barr, Dana Boyd (2024-01-06). "Systematic review of microplastics and nanoplastics in indoor and outdoor air: identifying a framework and data needs for quantifying human inhalation exposures". Journal of Exposure Science & Environmental Epidemiology: 1–12. doi: 10.1038/s41370-023-00634-x. ISSN  1559-064X. PMID  38184724.
  86. ^ "Are There Nano- and Microplastics in the Workplace?". blogs.cdc.gov/niosh-science-blog. February 19, 2020. Retrieved February 19, 2020.
  87. ^ a b Topmiller1, Dunn2, Jennifer L.1, , Kevin H.2. "Current strategies for engineering controls in nanomaterial production and downstream handling processes" (PDF). DHHS Publication. 102: 9–20.{{ cite journal}}: CS1 maint: multiple names: authors list ( link) CS1 maint: numeric names: authors list ( link)