PhotosBiographyFacebookTwitter

From Wikipedia, the free encyclopedia

James A. Wells
Born (1950-04-28) April 28, 1950 (age 73)
NationalityAmerican
Education University of California, Berkeley (B.A., 1973), Washington State University (Ph.D., 1979)
Known forProtein Engineering
SpouseCarol A Windsor
ChildrenJulian James Windsor-Wells, Natalie Hope Windsor-Wells
Awards National Academy of Sciences
Scientific career
FieldsChemical biology, protein engineering
Institutions University of California, San Francisco, Genentech, Inc., Sunesis Pharmaceuticals

James Allen Wells (born April 28, 1950) is a Professor of Pharmaceutical Chemistry and Cellular & Molecular Pharmacology at the University of California, San Francisco (UCSF) [1] and a member of the National Academy of Sciences. He received his B.A. degrees in biochemistry and psychology from University of California, Berkeley in 1973 and a PhD in biochemistry from Washington State University with Ralph Yount, PhD in 1979. He completed his postdoctoral studies at Stanford University School of Medicine with George Stark in 1982. He is a pioneer in protein engineering, phage display, fragment-based lead discovery, cellular apoptosis, and the cell surface proteome.

Career

Genentech (1982 - 1998)

Jim Wells began his independent research career as a co-founding member of the Protein Engineering Department at Genentech. At Genentech, Wells and his group pioneered "gain-of-function engineering" of enzymes (such as subtilisin [2]), growth factors (human growth hormone [3]), and antibodies by site-directed mutagenesis [4] and protein phage display. [5] [6] Several biologic products derived directly from these efforts ranging from Pegvisomat ( Somavert) an engineered growth hormone antagonist for treatment of acromegaly,  humanization of the Bevacizumab ( Avastin) a VEGF antagonist for treating cancers, and engineered proteases developed for popular laundry detergents by Genencor International. His group developed fundamental technologies ( cassette mutagenesis, alanine scanning, protein phage display) and protein design principles ("hot-spots" in protein interfaces, [7] additivity of mutational effects, receptor oligomerization in cytokines) commonly used for engineering enzymes, hormones, antibodies, and protein-protein interfaces. With Tony Kosssiakoff and Bart DeVos, they discovered the activation/dimerization mechanism of human growth hormone, a paradigm for cytokine signaling. [8] [9]

Sunesis Pharmaceuticals (1998 – 2005)

In 1998, Wells co-founded Sunesis Pharmaceuticals where he was CSO, and president.  At Sunesis, the group developed a novel technology for site-directed fragment-based drug discovery, Tethering, [10] [11] and applied it to cancer and inflammation targets. They were among the first to develop potent small molecules to protein protein interfaces and cryptic allosteric sites considered undruggable. [12] Several of the compounds discovered at Sunesis are now in clinical development. They also discovered the anti-inflammatory drug Lifitegrast, which was subsequently developed by SarCODE [13] and is now sold by Shire for dry eye syndrome.

University of California, San Francisco (2005 – current)

In 2005, Wells joined the faculty of Pharmaceutical Chemistry and Cellular & Molecular Pharmacology at UCSF. He founded the Small Molecule Discovery Center and served as Chair of Pharmaceutical Chemistry for 8 years. His own lab initially focused on the molecular basis of cell death as applied to cancer and inflammation through elaborating native substrates of caspases. His team designed a suite of engineered enzymes for dissecting protease signaling pathways (subtiligase [14] and the SNIPer [15]), E3 ligase substrates (the NEDDylator [16]), a split-Cas9 [17] for temporal editing, and allosteric inhibitors, split-kinases [18] and new phosphospecific antibodies [19] [20] for probing protein phosphorylation pathways. In 2012, Wells founded the Antibiome Center [21] as part of the Recombinant Antibody Network, [22] devoted to generating human recombinant antibodies at a proteome-wide scale using high throughput platforms for antibody phage display. The Wells Lab now investigates how cell surface proteomes change in health and disease by applying mass spectrometry and protein and antibody engineering, to understand and disrupt human-disease-associated signaling processes. [23] [24] Several notable antibody technologies have also been developed including site specific methionine conjugation using redox-activated chemical tagging (ReACT), [25] antibody-based chemically induced dimerizers (AbCID), [26] antibody-Based PROTACs (AbTAC), [27] antibody targeting a proteolytic neoepitope, [28] and cytokine receptor-targeting chimeras (kineTAC). [29]

Awards

  • 1990 Pfizer Award (given by the American Chemical Society for achievements in enzyme chemistry)
  • 1997 Distinguished Alumni Award, Washington State University, Pullman, WA
  • 1998 Christian B. Anfinsin Award presented by the Protein Society
  • 1998 Vincent du Vignead Award presented by the American Peptide Society
  • 1999 Elected Member to the National Academy of Sciences
  • 2003 Hans Neurath Award presented by the Protein Society
  • 2005 Braisted Award Lecture
  • 2006 Perlman Lecture Award of the ACS Biotechnology Division
  • 2009 Herman S. Bloch Award, University of Chicago, "for scientific excellence in industry"
  • 2010 Merck Award given by the ASBMB
  • 2011 Smissman Award in Medicinal Chemistry given by the American Chemical Society
  • 2011 Inducted into the MedChem Hall of Fame by American Chemical Society
  • 2015 Inducted into the American Academy of Arts & Science
  • 2016 Elected Member of National Academy of Inventors
  • 2017 WSU Regents' Distinguished Alumnus Award, Washington State University, Pullman, WA
  • 2022 UCSF Distinguished Faculty Research Lecture, University of California, San Francisco, CA

References

  1. ^ "Jim Wells, PhD". UCSF. Retrieved 18 January 2014.
  2. ^ Mitchinson, Colin; Wells, James A. (30 May 1989). "Protein engineering of disulfide bonds in subtilisin BPN'". Biochemistry. 28 (11): 4807–4815. doi: 10.1021/bi00437a043. ISSN  0006-2960. PMID  2504281.
  3. ^ Cunningham, B. C.; Wells, J. A. (2 June 1989). "High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis". Science. 244 (4908): 1081–1085. Bibcode: 1989Sci...244.1081C. doi: 10.1126/science.2471267. ISSN  0036-8075. PMID  2471267.
  4. ^ Wells, James A.; Vasser, Mark; Powers, David B. (1 January 1985). "Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites". Gene. 34 (2): 315–323. doi: 10.1016/0378-1119(85)90140-4. ISSN  0378-1119. PMID  3891521.
  5. ^ Lowman, H. B.; Bass, S. H.; Simpson, N.; Wells, J. A. (12 November 1991). "Selecting high-affinity binding proteins by monovalent phage display". Biochemistry. 30 (45): 10832–10838. doi: 10.1021/bi00109a004. ISSN  0006-2960. PMID  1932005.
  6. ^ Matthews, D. J.; Wells, J. A. (21 May 1993). "Substrate phage: selection of protease substrates by monovalent phage display". Science. 260 (5111): 1113–1117. Bibcode: 1993Sci...260.1113M. doi: 10.1126/science.8493554. ISSN  0036-8075. PMID  8493554.
  7. ^ Clackson, T.; Wells, J. A. (20 January 1995). "A hot spot of binding energy in a hormone-receptor interface". Science. 267 (5196): 383–386. Bibcode: 1995Sci...267..383C. doi: 10.1126/science.7529940. ISSN  0036-8075. PMID  7529940. S2CID  19380632.
  8. ^ Cunningham, BC; Ultsch, M; De Vos, AM; Mulkerrin, MG; Clauser, KR; Wells, JA (8 November 1991). "Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule". Science. 254 (5033): 821–5. Bibcode: 1991Sci...254..821C. doi: 10.1126/science.1948064. PMID  1948064.
  9. ^ Clackson, T.; Ultsch, M. H.; Wells, J. A.; de Vos, A. M. (17 April 1998). "Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity". Journal of Molecular Biology. 277 (5): 1111–1128. doi: 10.1006/jmbi.1998.1669. ISSN  0022-2836. PMID  9571026.
  10. ^ Erlanson, Daniel A.; Braisted, Andrew C.; Raphael, Darren R.; Randal, Mike; Stroud, Robert M.; Gordon, Eric M.; Wells, James A. (15 August 2000). "Site-directed ligand discovery". Proceedings of the National Academy of Sciences. 97 (17): 9367–9372. Bibcode: 2000PNAS...97.9367E. doi: 10.1073/pnas.97.17.9367. ISSN  0027-8424. PMC  16870. PMID  10944209.
  11. ^ Erlanson, Daniel A.; Wells, James A.; Braisted, Andrew C. (2004). "Tethering: fragment-based drug discovery". Annual Review of Biophysics and Biomolecular Structure. 33: 199–223. doi: 10.1146/annurev.biophys.33.110502.140409. ISSN  1056-8700. PMID  15139811.
  12. ^ Wells, James A.; McClendon, Christopher L. (December 2007). "Reaching for high-hanging fruit in drug discovery at protein–protein interfaces". Nature. 450 (7172): 1001–1009. Bibcode: 2007Natur.450.1001W. doi: 10.1038/nature06526. ISSN  0028-0836. PMID  18075579. S2CID  205211934.
  13. ^ Semba, Charles P.; Gadek, Thomas R. (2016). "Development of lifitegrast: a novel T-cell inhibitor for the treatment of dry eye disease". Clinical Ophthalmology. 10: 1083–1094. doi: 10.2147/OPTH.S110557. ISSN  1177-5467. PMC  4910612. PMID  27354762.
  14. ^ Weeks, Amy M.; Wells, James A. (January 2018). "Engineering peptide ligase specificity by proteomic identification of ligation sites". Nature Chemical Biology. 14 (1): 50–57. doi: 10.1038/nchembio.2521. ISSN  1552-4469. PMC  5726896. PMID  29155430.
  15. ^ Morgan, Charles W.; Julien, Olivier; Unger, Elizabeth K.; Shah, Nirao M.; Wells, James A. (2014). Turning on caspases with genetics and small molecules. Methods in Enzymology. Vol. 544. pp. 179–213. doi: 10.1016/B978-0-12-417158-9.00008-X. ISBN  9780124171589. ISSN  1557-7988. PMC  4249682. PMID  24974291.
  16. ^ Hill, Zachary B.; Pollock, Samuel B.; Zhuang, Min; Wells, James A. (12 October 2016). "Direct Proximity Tagging of Small Molecule Protein Targets Using an Engineered NEDD8 Ligase". Journal of the American Chemical Society. 138 (40): 13123–13126. doi: 10.1021/jacs.6b06828. ISSN  1520-5126. PMC  5308480. PMID  27626304.
  17. ^ Nguyen, Duy P.; Miyaoka, Yuichiro; Gilbert, Luke A.; Mayerl, Steven J.; Lee, Brian H.; Weissman, Jonathan S.; Conklin, Bruce R.; Wells, James A. (1 July 2016). "Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity". Nature Communications. 7: 12009. Bibcode: 2016NatCo...712009N. doi: 10.1038/ncomms12009. ISSN  2041-1723. PMC  4932181. PMID  27363581.
  18. ^ Diaz, Juan E.; Morgan, Charles W.; Minogue, Catherine E.; Hebert, Alexander S.; Coon, Joshua J.; Wells, James A. (19 October 2017). "A Split-Abl Kinase for Direct Activation in Cells". Cell Chemical Biology. 24 (10): 1250–1258.e4. doi: 10.1016/j.chembiol.2017.08.007. ISSN  2451-9448. PMC  5650542. PMID  28919041.
  19. ^ Mou, Yun; Zhou, Xin X.; Leung, Kevin; Martinko, Alexander J.; Yu, Jiun-Yann; Chen, Wentao; Wells, James A. (5 December 2018). "Engineering Improved Antiphosphotyrosine Antibodies Based on an Immunoconvergent Binding Motif". Journal of the American Chemical Society. 140 (48): 16615–16624. doi: 10.1021/jacs.8b08402. ISSN  1520-5126. PMID  30398859. S2CID  53232022.
  20. ^ Zhou, Xin X.; Bracken, Colton J.; Zhang, Kaihua; Zhou, Jie; Mou, Yun; Wang, Lei; Cheng, Yifan; Leung, Kevin K.; Wells, James A. (14 October 2020). "Targeting Phosphotyrosine in Native Proteins with Conditional, Bispecific Antibody Traps". Journal of the American Chemical Society. 142 (41): 17703–17713. doi: 10.1021/jacs.0c08458. ISSN  1520-5126. PMC  8168474. PMID  32924468.
  21. ^ "QBI | The Antibiome Center". qbi.ucsf.edu. Retrieved 15 November 2022.
  22. ^ "Recombinant Antibody Network". recombinant-antibodies.org. Retrieved 15 November 2022.
  23. ^ Martinko, Alexander J.; Truillet, Charles; Julien, Olivier; Diaz, Juan E.; Horlbeck, Max A.; Whiteley, Gordon; Blonder, Josip; Weissman, Jonathan S.; Bandyopadhyay, Sourav; Evans, Michael J.; Wells, James A. (23 January 2018). "Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins". eLife. 7: e31098. doi: 10.7554/eLife.31098. ISSN  2050-084X. PMC  5796798. PMID  29359686.
  24. ^ Leung, Kevin K.; Wilson, Gary M.; Kirkemo, Lisa L.; Riley, Nicholas M.; Coon, Joshua J.; Wells, James A. (7 April 2020). "Broad and thematic remodeling of the surfaceome and glycoproteome on isogenic cells transformed with driving proliferative oncogenes". Proceedings of the National Academy of Sciences of the United States of America. 117 (14): 7764–7775. Bibcode: 2020PNAS..117.7764L. doi: 10.1073/pnas.1917947117. ISSN  1091-6490. PMC  7148585. PMID  32205440.
  25. ^ Elledge, Susanna K.; Tran, Hai L.; Christian, Alec H.; Steri, Veronica; Hann, Byron; Toste, F. Dean; Chang, Christopher J.; Wells, James A. (17 March 2020). "Systematic identification of engineered methionines and oxaziridines for efficient, stable, and site-specific antibody bioconjugation". Proceedings of the National Academy of Sciences of the United States of America. 117 (11): 5733–5740. Bibcode: 2020PNAS..117.5733E. doi: 10.1073/pnas.1920561117. ISSN  1091-6490. PMC  7084160. PMID  32123103.
  26. ^ Hill, Zachary B.; Martinko, Alexander J.; Nguyen, Duy P.; Wells, James A. (February 2018). "Human antibody-based chemically induced dimerizers for cell therapeutic applications". Nature Chemical Biology. 14 (2): 112–117. doi: 10.1038/nchembio.2529. ISSN  1552-4469. PMC  6352901. PMID  29200207.
  27. ^ Cotton, Adam D.; Nguyen, Duy P.; Gramespacher, Josef A.; Seiple, Ian B.; Wells, James A. (20 January 2021). "Development of Antibody-Based PROTACs for the Degradation of the Cell-Surface Immune Checkpoint Protein PD-L1". Journal of the American Chemical Society. 143 (2): 593–598. doi: 10.1021/jacs.0c10008. ISSN  1520-5126. PMC  8154509. PMID  33395526.
  28. ^ Lim, Shion A.; Zhou, Jie; Martinko, Alexander J.; Wang, Yung-Hua; Filippova, Ekaterina V.; Steri, Veronica; Wang, Donghui; Remesh, Soumya G.; Liu, Jia; Hann, Byron; Kossiakoff, Anthony A.; Evans, Michael J.; Leung, Kevin K.; Wells, James A. (15 February 2022). "Targeting a proteolytic neoepitope on CUB domain containing protein 1 (CDCP1) for RAS-driven cancers". Journal of Clinical Investigation. 132 (4): e154604. doi: 10.1172/JCI154604. ISSN  1558-8238. PMC  8843743. PMID  35166238.
  29. ^ Pance, Katarina; Gramespacher, Josef A.; Byrnes, James R.; Salangsang, Fernando; Serrano, Juan-Antonio C.; Cotton, Adam D.; Steri, Veronica; Wells, James A. (22 September 2022). "Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins". Nature Biotechnology. 41 (2): 273–281. doi: 10.1038/s41587-022-01456-2. ISSN  1087-0156. PMC  9931583. PMID  36138170. S2CID  252465845.