PhotosBiographyFacebookTwitter

From Wikipedia, the free encyclopedia
Frederick T. Mackenzie
Mackenzie in 2010
Born(1934-03-17)March 17, 1934
DiedJanuary 3, 2024(2024-01-03) (aged 89)
NationalityAmerican
Education Upsala College
Lehigh University
Known forEvolution of Sedimentary Rocks
SpouseJudith Mackenzie
AwardsSee awards section
Scientific career
FieldsSedimentary and global geochemistry
Institutions University of Hawaii
Northwestern University
Thesis (1959 & 1962)
Website Fred T. Mackenzie

Frederick T. Mackenzie (March 17, 1934 – January 3, 2024) was an American sedimentary and global biogeochemist. [1] Mackenzie applied experimental and field data coupled to a sound theoretical framework to the solution of geological, geochemical, and oceanographic problems at various time and space scales. [2]

Mackenzie is identified closely with the book Evolution of Sedimentary Rocks co-authored in 1971 by Mackenzie with Robert M. Garrels, which reawakened and revitalized the scientific community to the ideas of the British geologist James Hutton that lay fallow for more than 150 years. [3] Evolution of Sedimentary Rocks expanded on the theory of reverse weathering proposed by Mackenzie and Garrels in 1966. [4] [5]

Life and career

Mackenzie earned a bachelor's degree in physics and geology from Upsala College in 1955. He later earned an M.S. degree in 1959 and his Ph.D. in 1962 in geological sciences and biogeochemistry from Lehigh University. [2] His Ph.D. dissertation research dealt with a paleocurrent and environmental analysis of the ~ 140 Ma Cretaceous Lakota and equivalent rock units of the Western Interior of the United States. [6]

Following completion of his Ph.D., Mackenzie went to work full-time for Shell Oil Company as an Exploration and Research Geologist. [2] Two of his assignments at the time involved studies of the stratigraphy and structure of Ordovician carbonates in the Appalachian Mountains as targets for oil exploration and of the Devonian Marcellus Shale, which in recent years has become a horizon for gas production by fracking and a subject of strong environmental concern. Then in 1963, Mackenzie accepted a position as Staff Geochemist and assistant director at the Bermuda Biological Station for Research (BBSR, now the Bermuda Institute of Ocean Sciences). [2] [7] One of his tasks at BBSR was to manage Hydrostation S, the longest continuously occupied hydrostation in the world.

In 1967 Mackenzie joined the faculty at Northwestern University becoming professor and department chair in 1971. [2] [8] Here between 1967 and 1981, he in association with colleagues Robert Garrels, Hal Helgeson, Abraham Lerman and his many graduate students and national and international colleagues published a number of classic papers involving an interdisciplinary range of scientific topics including early diagenetic processes of reverse weathering and controls on seawater composition, pore water geochemistry, kinetics and thermodynamics of mineral-water reactions, and modeling of Earth's surface environmental system over geological time. [9]

In 1982 Mackenzie became professor at the University of Hawaii at Manoa, where he continued doing research and teaching, although in 2008, he became a Professor Emeritus of Oceanography and Geology & Geophysics. [2] At the University of Hawaii, Mackenzie broadened his research and teaching program even more into the field of marine biogeochemistry, particularly into the biogeochemical interactions involving carbon and oxygen and the nutrient elements of nitrogen, phosphorus, and silicon between the land and coastal waters. [10] He also investigated CO2 exchange in coastal marine waters, and the biogeochemistry and consequences of ocean acidification for reefs and other carbonate ecosystems. [11] In 1997, Mackenzie founded the Global Environmental Science Program at the University of Hawai‘i, at Manoa. [2]

Mackenzie authored or co-authored nearly 300 scholarly works, and has published with more than 200 co-authors. [2] [10] [12] Mackenzie was also a passionate athlete, lifetime traveler, and mountaineer having climbed in many ranges of the world. [2]

Mackenzie died in Honolulu, Hawaii, on January 3, 2024, at the age of 89. [13]

Fellowships, awards and honors

Mackenzie was a Fellow of the Mineralogical Society of America, the Geological Society of America, the Geochemical Society, the European Association of Geochemistry, and the American Association for the Advancement of Science, and was a Life Trustee of the Bermuda Institute of Ocean Sciences. [14] He has received innumerable awards and honors including: [15] [16] [17] [18] [19] [20] [21]

Selected publications

Books

  • Evolution of Sedimentary Rocks with R. M. Garrels (1971) ISBN  0-393-09959-8 [22]
  • Chemical Cycles and the Global Environment – Assessing Human Influences with R. M. Garrels, C. Hunt (1973, 1974, 1975) ISBN  0-913232-29-7 [23]
  • Chemical Cycles in the Evolution of Earth with C. B. Gregor, R. M. Garrels, and J. B. Maynard (1988) ISBN  978-0-471-08911-7 [24]
  • Geochemistry of Sedimentary Carbonates with R. W. Morse (1990) ISBN  978-0-444-88781-8 [25]
  • Interactions of C, N, P and S Biogeochemical Cycles and Global Change with R. Wollast and L. Chou (1993) ISBN  978-3-642-76064-8 [26]
  • Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming? with G. Woodwell (1995) ISBN  978-0-19-508640-9 [27]
  • Carbon in the Geobiosphere—Earth's Outer Shell with A. Lerman (2006) ISBN  9048170222 [28]
  • "Biological and geochemical forcings to Phanerozoic change in seawater, atmosphere, and carbonate precipitate composition." in Evolution of Primary Producers in the Sea with M. W. Guidry and R. S. Arvidson (2007) ISBN  978-0-12-370518-1 [29]
  • Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change (2011) ISBN  978-0-321-66772-4 [30]

Journal articles

  • "Silicates: Reactivity with Sea Water" in Science, with R. M. Garrels (1965) [31]
  • "Chemical mass balance between rivers and oceans" in American Journal of Science with R. M. Garrels (1966) [32]
  • "The Pleistocene history of Bermuda" in Geological Society of America Bulletin with L. S. Land and S. J. Gould (1967) [33]
  • "A Quantitative Model for the Sedimentary Rock Cycle" in Journal of Marine Chemistry with R. M. Garrels (1972) [34]
  • "Time Variability of Pore Water Chemistry in Recent Carbonate Sediments" in Geochimica et Cosmochimica Acta with D. C. Thorstenson (1974) [35]
  • "Tectonic Controls of Phanerozoic Sedimentary Rock Cycling" in Journal of the Geological Society with J. Pigott (1981) [36]
  • "Stabilities of Synthetic Magnesian Calcites in Aqueous Solution: Comparison with Biogenic Materials" in Geochimica et Cosmochimica Acta with W. D. Bishoff and F. C. Bishop (1987) [37]
  • "Bank-derived Carbonate Sediment Transport and Dissolution in the Hawaiian Archipelago" in Aquatic Geochemistry with C. Sabine (1995) [38]
  • "The Dolomite Problem: Control of Precipitation Kinetics by Temperature and Saturation State" in American Journal of Science with R. S. Arvidson (1999) [39]
  • "Biogeochemical Responses of the Carbon Cycle to Natural and Human Perturbations: Past, Present, and Future" in American Journal of Science with A. Lerman and L. M. Ver (1999) [40]
  • "Shallow-water Oceans: a Source or Sink of Atmospheric CO2?" in Frontiers in Ecology and the Environment with A. J. Andersson (2004) [41]
  • "Coastal Ocean and Carbonate Systems in the High CO2 World of the Anthropocene" in American Journal of Science with A. J. Andersson and A. Lerman (2005) [42]
  • "Initial Responses of Carbonate-rich Shelf Sediments to Rising Atmospheric pCO2 and 'Ocean Acidification': Role of High Mg-Calcites" in Geochimica et Cosmochimica Acta with J. W. Morse and A. J. Andersson (2006) [43]
  • "Coupled C, N, P, and O Biogeochemical Cycling at the Land-ocean Interface" in Treatise on Coastal and Estuarine Science with A. Lerman and E.H. DeCarlo (2011) [44]
  • "The Marine Carbon System and Ocean Acidification during Phanerozoic Time" in Geochemical Perspectives with A. J. Andersson (2013) [45]
  • "The sensitivity of the Phanerozoic inorganic carbon system to the onset of pelagic sedimentation" in Aquatic Geochemistry with R. S. Arvidson and R. A, Berner (2014) [46]
  • "Evolution of sedimentary rocks" in Treatise on Geochemistry with J. Veizer (2014) [47]

References

  1. ^ "Fred Mackenzie". American Scientist. The Scientific Research Society. Retrieved March 28, 2015.
  2. ^ a b c d e f g h i De Carlo, Eric Heinen; Arvidson, Rolf S.; Chou, Lei; Sabine, Christopher; Luther, George W. (November 2013). "Fred T. Mackenzie: Gentleman, Scholar, Mountaineer and Model Colleague". Aquatic Geochemistry. 19 (5–6): 347–351. doi: 10.1007/s10498-013-9221-8.
  3. ^ Berner, Robert A. "A Biographical Memoir: Robert Minard Garrels" (PDF). Biographical Memoirs of the National Academy of Sciences. National Academy of Sciences. Retrieved 28 March 2015.
  4. ^ Emerson, Steven; Hedges, John (2008). Chemical Oceanography and the Marine Carbon Cycle. New York, New York: Cambridge University Press. p. 43. ISBN  978-0-521-83313-4. Retrieved 28 March 2015.
  5. ^ R. M. Garrels, F. T. Mackenzie, 1966, Chemical mass balance between rivers and oceans. American Journal of Science, 264, 507-525.
  6. ^ F. T. Mackenzie and J. D. Ryan, 1962, Cloverly-Lakota and Fall River paleocurrents in the Wyoming Rockies. Wyoming Geological Association Guidebook. Symposium on Early Cretaceous Rocks of Wyoming and Adjacent Areas, 44-61.
  7. ^ Andersson, Andreas J. (April 2013). "The Marine Carbon System and Ocean Acidification during Phanerozoic Time". Geochemical Perspectives. 2 (1): 1–227. doi: 10.7185/geochempersp.2.1.
  8. ^ "Fred Mackenzie". Northwestern University. Helix Magazine. Retrieved 8 March 2015.
  9. ^ School of Ocean and Earth Science and Technology. "Fred T. Mackenzie Scholarly Works". University of Hawaii. Retrieved 8 March 2015.
  10. ^ a b MacKenzie, F.T.; De Carlo, E.H.; Lerman, A. (July 2012). Coupled C, N, P, and O Biogeochemical Cycling at the Land–Ocean Interface. Vol. 5. pp. 317–342. doi: 10.1016/B978-0-12-374711-2.00512-X. ISBN  9780080878850. {{ cite book}}: |journal= ignored ( help)
  11. ^ Reyes-Nivea, C. "Interactive comment on Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae" (PDF). Biogeosciences Discussion. European Geosciences Union. Retrieved 30 March 2015.
  12. ^ Mackenzie, Fred; Andersson, Andreas (2013). Geochemical Perspectives. The Marine Carbon and Ocean Acidification during the Phaneozoic Time.
  13. ^ "In Memoriam: Fred T. Mackenzie, legendary UH Manoa faculty and scientist". January 17, 2024.
  14. ^ School of Ocean and Earth Science and Technology. "Fred T. Mackenzie Honors". University of Hawaii. Retrieved 8 March 2015.
  15. ^ Annual Report of the SEPM (SOCIETY FOR SEDIMENTARY GEOLOGY) for the year ending at the seventy-ninth annual meeting
  16. ^ IAGC. International Association of GeoChemistry. Retrieved 2007
  17. ^ "Regents' Medal for Excellence in Research". www.hawaii.edu. University of Hawaii. Retrieved 30 April 2015.
  18. ^ "Regents' Medal for Excellence in Teaching 1965-2003". www.hawaii.edu. University of Hawaii. Retrieved 30 April 2015.
  19. ^ "Scholars research and accolades". www.arcsfoundation.org. Achievement Rewards for College Scientists Foundation. Archived from the original on 4 March 2016. Retrieved 30 April 2015.
  20. ^ "Fred T. Mackenzie". www.wiko-berlin.de. Wissenschaftskolleg zu Berlin. Retrieved 30 April 2015.
  21. ^ "C.C. Patterson Award". www.geochemsoc.org. Geochemical Society. Retrieved 30 April 2015.
  22. ^ Garrels, Robert M.; Mackenzie, Fred T. (1971). Evolution of Sedimentary Rocks (1st ed.). New York: W. W. Norton & Company. ISBN  978-0-393-09959-1. Retrieved 27 April 2015.
  23. ^ Garrels, R.M.; Hunt, C.; Mackenze, F. T. (1975). Chemical Cycles and the Global Environment – Assessing Human Influences. Los Altos, California: W. Kaufman, Inc. ISBN  978-0-913232-29-3. Retrieved 30 April 2015.
  24. ^ Gregor, C.B.; Garrels, R.M.; Mackenzie, F.T.; Maynard, J.B. (1988). Chemical Cycles in the Evolution of Earth (1 ed.). University of California: Wiley. p. 276. ISBN  978-0-471-08911-7. Retrieved 30 April 2015.
  25. ^ Mackenzie, F.T.; Morse, R.W. (1990). Geochemistry of Sedimentary Carbonates. Amsterdam, Holland: Elsevier. p. 707. ISBN  978-0-444-88781-8. Retrieved 30 April 2015.
  26. ^ Wollast, R; Mackenzie, Fred T; Chou, Lei (1993). Interactions of C, N, P, and S biogeochemical cycles and global change. Berlin: Springer-Verlag. doi: 10.1007/978-3-642-76064-8. ISBN  978-3-642-76064-8.
  27. ^ Woodwell, George M.; Mackenzie, Fred T. (1995). Biotic Feedbacks in the Global Climatic System: Will the Warming Feed the Warming?. New York: Oxford University Press. p. 416. ISBN  978-0-444-88781-8.
  28. ^ Mackenzie, Fred T.; Lerman, Abraham (2010). Carbon in the Geobiosphere—Earth's Outer Shell. Dordrecht, Netherlands: Springer. p. 402. ISBN  978-9048170227.
  29. ^ Mackenzie, Fred T.; Guidry, M.W.; Arvidson, R.S. (2007). Falkowski, P.; Knoll, A. (eds.). Evolution of Primary Producers in the Sea (PDF). Massachusetts: Elsevier Academic Press. pp. 377–403. ISBN  978-0-12-370518-1.
  30. ^ Mackenzie, Fred T. (1998). Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change (4+1991 with Judith Mackenzie+1998+2003 ed.). Upper Saddle River, N. J.: Prentice Hall. p. 579. ISBN  978-0-321-66772-4.
  31. ^ Mackenzie, Fred T.; Garrels, Robert M. (1 October 1965). "Silicates: Reactivity with Sea Water". Science. 150 (3692): 57–58. Bibcode: 1965Sci...150...57M. doi: 10.1126/science.150.3692.57. PMID  17829745. S2CID  42430308.
  32. ^ Mackenzie, Fred T.; Garrels, Robert M. (1 September 1966). "Chemical mass balance between rivers and oceans". American Journal of Science. 264 (7): 507–525. Bibcode: 1966AmJS..264..507M. doi: 10.2475/ajs.264.7.507.
  33. ^ Land, Lyton S.; Mackenzie, Fred T.; Gould, Stephen J. (24 June 1966). "Pleistocene History of Bermuda". Geological Society of America Bulletin. 78 (8): 993–1006. doi: 10.1130/0016-7606(1967)78[993:phob]2.0.co;2.
  34. ^ Garrels, Robert M.; Mackenzie, Fred T. (1972). "A Quantitative Model for the Sedimentary Rock Cycle". Journal of Marine Chemistry. 1: 27–40. doi: 10.1016/0304-4203(72)90004-7.
  35. ^ Mackenzie, Fred T; Thorstenson, D. C. (1974). "Time Variability of Pore Water Chemistry in Recent Carbonate Sediments". Geochimica et Cosmochimica Acta. 38: 1–19. doi: 10.1016/0016-7037(74)90192-6.
  36. ^ Mackenzie, Fred T.; Pigott, J. (1981). "Tectonic Controls of Phanerozoic Sedimentary Rock Cycling". Journal of the Geological Society. 138 (2): 183–196. Bibcode: 1981JGSoc.138..183M. doi: 10.1144/gsjgs.138.2.0183. S2CID  129021179. Retrieved 30 April 2015.
  37. ^ Bishoff, William D.; Bishop, Finley C.; Mackenzie, Fred T. (1987). "Stabilities of Synthetic Magnesian Calcites in Aqueous Solution: Comparison with Biogenic Materials". Geochimica et Cosmochimica Acta. 51 (6): 1413–1423. Bibcode: 1987GeCoA..51.1413B. doi: 10.1016/0016-7037(87)90325-5. Retrieved 30 April 2015.
  38. ^ Mackenzie, F.T.; Sabine, C. (1995). "Bank-derived Carbonate Sediment Transport and Dissolution in the Hawaiian Archipelago". Aquatic Geochemistry. 1 (2): 189–230. doi: 10.1007/BF00702891. S2CID  129393449.
  39. ^ Arvidson, R.S.; Mackenzie, F.T. (1999). "The dolomite problem: Control of Precipitation Kinetics by Temperature and Saturation State". American Journal of Science. 299 (4): 257–288. Bibcode: 1999AmJS..299..257A. doi: 10.2475/ajs.299.4.257. S2CID  49341088.
  40. ^ Lerman, A.; Mackenzie, F.T.; Ver, L.M (1999). "Biogeochemical Responses of the Carbon Cycle to Natural and Human Perturbations: Past, Present, and Future". American Journal of Science. 299 (7–9): 762–801. Bibcode: 1999AmJS..299..762V. CiteSeerX  10.1.1.534.4685. doi: 10.2475/ajs.299.7-9.762.
  41. ^ Anderson, A.J.; Mackenzie, F.T. (2004). "Shallow-water Oceans: a Source or Sink of Atmospheric CO2?". Frontiers in Ecology and the Environment. 2 (7): 348–353. doi: 10.1890/1540-9295(2004)002[0348:SOASOS]2.0.CO;2.
  42. ^ Anderson, A.J.; Lehman, A.; Mackenzie, F.T. (2005). "Coastal Ocean and Carbonate Systems in the High CO2 World of the Anthropocene". American Journal of Science. 305 (9): 875–918. Bibcode: 2005AmJS..305..875A. doi: 10.2475/ajs.305.9.875.
  43. ^ Anderson, J.; Mackenzie, F.T.; Morse, J.W. (2006). "Initial Responses of Carbonate-rich Shelf Sediments to Rising Atmospheric pCO2 and 'Ocean Acidification': Role of High Mg-Calcites". Geochimica et Cosmochimica Acta. 70 (23): 5814–5830. Bibcode: 2006GeCoA..70.5814M. doi: 10.1016/j.gca.2006.08.017. Retrieved 1 May 2015.
  44. ^ Mackenzie, Fred T.; De Carlo, E.H.; Lerman, A. (30 July 2012). Middleburg, J; Laane, R (eds.). "Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface". Treatise on Coastal and Estuarine Science. 5 (10): 317–342. doi: 10.1016/B978-0-12-374711-2.00512-X.
  45. ^ Mackenzie, Fred T.; Andersson, Andreas J. (2013). "The Marine Carbon System and Ocean Acidification during Phanerozoic Time". Geochemical Perspectives. 2 (1): 227. doi: 10.7185/geochempersp.2.1.
  46. ^ Arvidson, Rolf S.; Mackenzie, Fred T.; Berner, Robert A. (5 February 2014). "The Sensitivity of the Phanerozoic Inorganic Carbon System to the Onset of Pelagic Sedimentation". Aquatic Geochemistry. 20 (2–3): 343–362. doi: 10.1007/s10498-013-9224-5. S2CID  129590986.
  47. ^ J., Veizer (19 October 2013). "Evolution of Sedimentary Rocks". In Holland, H. D.; Turekian, K. K.; Mackenzie, F.T. (eds.). Treatise on Geochemistry (Second Edition). Vol. 9 Sediments, Diagenesis and Sedimentary Rocks (2 ed.). ScienceDirect. pp. 399–435. doi: 10.1016/b978-0-08-095975-7.00715-4. ISBN  9780080983004. {{ cite book}}: |journal= ignored ( help)