From Wikipedia, the free encyclopedia
Two photographs of the same section of a pine forest; both show blackened bark at least halfway up the trees. The first picture is noticeably lacking in surface vegetation, while the second shows small, green grasses on the forest floor.
Ecological succession after a wildfire in a boreal pine forest next to Hara Bog, Lahemaa National Park, Estonia. The pictures were taken one and two years after the fire.

Fire adaptations are traits of plants and animals that help them survive wildfire or to use resources created by wildfire. These traits can help plants and animals increase their survival rates during a fire and/or reproduce offspring after a fire. Both plants and animals have multiple strategies for surviving and reproducing after fire. Plants in wildfire-prone ecosystems often survive through adaptations to their local fire regime. Such adaptations include physical protection against heat, increased growth after a fire event, and flammable materials that encourage fire and may eliminate competition.

For example, plants of the genus Eucalyptus contain flammable oils that encourage fire and hard sclerophyll leaves to resist heat and drought, ensuring their dominance over less fire-tolerant species. [1] [2] Dense bark, shedding lower branches, and high water content in external structures may also protect trees from rising temperatures. [3] Fire-resistant seeds and reserve shoots that sprout after a fire encourage species preservation, as embodied by pioneer species. Smoke, charred wood, and heat can stimulate the germination of seeds in a process called serotiny. [4] Exposure to smoke from burning plants promotes germination in other types of plants by inducing the production of the orange butenolide. [5]

Plant adaptations to fire

Unlike animals, plants are not able to move physically during a fire. However, plants have their own ways to survive a fire event or recover after a fire. The strategies can be classified into three types: resist (above-ground parts survive fire), recover (evade mortality by sprouting), and recruit (seed germination after the fire). Fire plays a role as a filter that can select different fire response traits. [6]

Resist

Thick bark

An example of thick bark

Fire impacts plants most directly via heat damage. However, new studies indicate that hydraulic failure kills trees during a fire in addition to fire scorching. High temperature cuts the water supply to the canopy and causes the death of the tree[ citation needed]. Fortunately, thick bark can protect plants because they keep stems away from high temperature. [6] Under the protection of bark, living tissue won't have direct contact with fire and the survival rate of plants will be increased. Heat resistance is a function of bark thermal diffusivity (a property of the species) and bark thickness (increasing exponentially with bark thickness). [7] Thick bark is common in species adapted to surface or low-severity fire regimes. On the other hand, plants in crown or high-severity fire regimes usually have thinner barks because it is meaningless to invest in thick bark without it conferring an advantage in survivorship. [6]

Self-pruning branches

Self-pruning is another trait of plants to resist fires. Self-pruning branches can reduce the chance for surface fire to reach the canopy because ladder fuels are removed. Self-pruning branches are common in surface or low-severity fire regimes. [6]

Recover

Epicormic buds

An example of epicormic sprouting

Epicormic buds are dormant buds under the bark or even deeper. [8] Buds can turn active and grow due to environmental stress such as fire or drought. [9] This trait can help plants to recover their canopies rapidly after a fire. For example, eucalypts are known for this trait. The bark may be removed or burnt by severe fires, but buds are still able to germinate and recover. This trait is common in surface or low-severity fire regimes. [6]

Lignotubers

A basal lignotuber

Not all plants have thick bark and epicormic buds. But for some shrubs and trees, their buds are located below ground, which are able to re-sprout even when the stems are killed by fire. [6] Lignotubers, woody structures around the roots of plants that contains many dormant buds and nutrients such as starch, are very helpful for plants to recover after a fire. [10] [11] In case the stem was damaged by a fire, buds will sprout forming basal shoots. Species with lignotubers are often seen in crown or high-severity fire regimes (e.g., chamise in chaparral).

Clonal spread

Clonal spread is usually triggered by fires and other forms of removal of above-ground stems. The buds from the mother plant can develop into basal shoots or suckers from roots some distance from the plant. Aspen and Californian redwoods are two examples of clonal spread. [6] In clonal communities, all the individuals developed vegetatively from one single ancestor rather than reproduced sexually. For example, the Pando is a large clonal aspen colony in Utah that developed from a single quaking aspen tree. There are currently more than 40,000 trunks in this colony, and the root system is about 80,000 years old. [12] [13]

Pando is a clonal colony that developed from a single tree by clonal spreading.

Recruit

Serotiny

Jack Pine cones are serotinous.

Serotiny is a seed dispersal strategy in which the dissemination of seeds is stimulated by external triggers (such as fires) rather than by natural maturation. [14] For serotinous plants, seeds are protected by woody structures during fires and will germinate after the fire. This trait can be found in conifer genera in both the northern and southern hemispheres as well as in flowering plant families (e.g., Banksia). Serotiny is a typical trait in the crown or high-severity fire regimes. [6]

Fire stimulated germination

Many species persist in a long-lived soil seed bank, and are stimulated to germinate via thermal scarification or smoke exposure.

Fire-stimulated flowering

A less common strategy is fire-stimulated flowering.

Dispersal

Species with very high wind dispersal capacity and seed production often are the first arrivals after a fire or other soil disturbance. For example, fireweed is common in burned areas in the western United States.

Plants and fire regimes

The fire regime exerts a strong filter on which plant species may occur in a given locality. [6] For example, trees in high-severity regimes usually have thin bark while trees in low-severity regimes typically have thick bark. Another example will be that trees in surface fire regimes tend to have epicormic buds rather than basal buds. On the other hand, plants can also alter fire regimes. Oaks, for example, produce a litter layer which slows down the fire spread while pines create a flammable duff layer which increases fire spread. [6] More profoundly, the composition of species can influence fire regimes even when the climate remains unchanged. For example, the mixed forests consists of conifers and chaparral can be found in Cascade Mountains. Conifers burn with low-severity surface fires while chaparral burns with high-severity crown fires. [15] Ironically, some trees can "use" fires to help them to survive during competitions with other trees. Pine trees, for example, can produce flammable litter layers, which help them to take advantage during the completion with other, less fire adapted, species. [6]

Grasslands in Western Sabah, Malaysian pine forests, and Indonesian Casuarina forests are believed to have resulted from previous periods of fire. [16] Chamise deadwood litter is low in water content and flammable, and the shrub quickly sprouts after a fire. [3] Cape lilies lie dormant until flames brush away the covering and then blossom almost overnight. [17] Sequoia rely on periodic fires to reduce competition, release seeds from their cones, and clear the soil and canopy for new growth. [18] Caribbean Pine in Bahamian pineyards have adapted to and rely on low-intensity, surface fires for survival and growth. An optimum fire frequency for growth is every 3 to 10 years. Too frequent fires favor herbaceous plants, and infrequent fires favor species typical of Bahamian dry forests. [19]

Evolution of fire survival traits

Phylogenetic studies indicated that fire adaptive traits have evolved for a long time (tens of millions of years) and these traits are associated with the environment. In habitats with regular surface fires, similar species developed traits such as thick bark and self-pruning branches. In crown fire regimes, pines have evolved traits such as retaining dead branches in order to attract fires. These traits are inherited from the fire-sensitive ancestors of modern pines. [6] Other traits such as serotiny and fire-stimulating flowering also have evolved for millions of years. [6] Some species are capable of using flammability to establish their habitats. For example, trees evolved with fire-embracing traits can "sacrifice" themselves during fires. But they also cause fires to spread and kill their less flammable neighbors. With the help of other fire adaptive traits such as serotiny, flammable trees will occupy the gap created by fires and colonize the habitat. [20] [21]

Animals' adaptations to fires

Arboreal koalas are vulnerable during forest fires

Direct effects of fires on animals

Most animals have sufficient mobility to successfully evade fires. Vertebrates such as large mammals and adult birds are usually capable of escaping from fires. However, young animals which lack mobility may suffer from fires and have high mortality. Ground-dwelling invertebrates are less impacted by fires (due to low thermal diffusivity of soil) while tree-living invertebrates may be killed by crown fires but survive surface fires. Animals are seldom killed by fires directly. Of the animals killed during the Yellowstone fires of 1988, asphyxiation is believed to be the primary cause of death. [6]

Long term effects of fires on animals

More importantly, fires have long-term effects on the post-burn environment. Fires in seldom-burned rainforests can cause disasters. For example, El Niño-induced surface fires in central Brazilian Amazonia have seriously affected the habitats of birds and primates. [22] Fires also expose animals to dangers such as humans or predators. Generally in a habitat previously with more understory species and less open site species, a fire may replace the fauna structure with more open species and much less understory species. However, the habitat normally will recover to the original structure. [23]

Animals and fire regimes

Prairie dogs have impacts on fire regimes in western USA

Just like plants may alter fire regimes, animals also have impacts on fire regimes. For example, grazing animals consume fuel for fires and reduce the possibilities of future fires. Many animals play roles as designers of fire regimes. Prairie dogs, for example, are rodents which are common in North America. They are able to control fires by grazing grasses too short to burn. [6]

Animal use of fire

Besides humans, the black kite may be another species that purposely uses fire. [24]

Fires are not always detrimental. Burnt areas usually have better quality and accessibility of foods for animals, which attract animals to forage from nearby habitats. For example, fires can kill trees, and dead trees can attract insects. Birds are attracted by the abundance of food, and they can spread the seeds of herbaceous plants. Eventually large herbivores will also flourish. Also, large mammals prefer newly burnt areas because they need less vigilance for predators. [6]

An example of animals' uses of fires is the black kite, a carnivorous bird which can be found globally. In monsoonal areas of north Australia, surface fires are said to spread, including across intended firebreaks, by burning or smoldering pieces of wood or burning tufts of grass carried - potentially intentionally - by large flying birds accustomed to catch prey flushed out by wildfires. Species involved in this activity are the black kite ( Milvus migrans), whistling kite ( Haliastur sphenurus), and brown falcon ( Falco berigora). Local Aborigines have known of this behavior for a long time, including in their mythology. [24] To date, no clear recordings of this behaviour exist, rending the testing of the intentions behind this behaviour difficult.

See also

References

  1. ^ Santos, Robert L. (1997). "Section Three: Problems, Cares, Economics, and Species". The Eucalyptus of California. California State University. Archived from the original on 2 June 2010. Retrieved 26 June 2009.
  2. ^ Fire. The Australian Experience, 5.
  3. ^ a b Stephen J. Pyne. "How Plants Use Fire (And Are Used By It)". NOVA online. Archived from the original on 8 August 2009. Retrieved 30 June 2009.
  4. ^ Keeley, J.E. & C.J. Fotheringham (1997). "Trace gas emission in smoke-induced germination" (PDF). Science. 276 (5316): 1248–1250. CiteSeerX  10.1.1.3.2708. doi: 10.1126/science.276.5316.1248. Archived from the original (PDF) on 6 May 2009. Retrieved 26 June 2009.
  5. ^ Flematti GR; Ghisalberti EL; Dixon KW; Trengove RD (2004). "A compound from smoke that promotes seed germination". Science. 305 (5686): 977. doi: 10.1126/science.1099944. PMID  15247439. S2CID  42979006.
  6. ^ a b c d e f g h i j k l m n o p Scott, Andrew C.; Bowman, David M.J.S.; Bond, William J.; Pyne, Stephen J.; Alexander, Martin E. (2014). Fire on Earth : An Introduction. Chichester, West Sussex: Wiley-Blackwell. ISBN  9781119953562. OCLC  892138560.
  7. ^ van Mantgem, Phillip; Schwartz, Mark (2003). "Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions". Forest Ecology and Management. 178 (3): 341–352. doi: 10.1016/s0378-1127(02)00554-6.
  8. ^ "Glossary". www.anbg.gov.au. Archived from the original on 2011-03-14. Retrieved 2017-11-12.
  9. ^ Percival, Glynn. "EPICORMIC SHOOTS" (PDF). Retrieved 11 November 2017.
  10. ^ C., Scott, Andrew (28 January 2014). Fire on earth : an introduction. Bowman, D. M. J. S., Bond, William J., 1948-, Pyne, Stephen J., 1949-, Alexander, Martin E. Chichester, West Sussex. ISBN  9781119953562. OCLC  892138560.{{ cite book}}: CS1 maint: location missing publisher ( link) CS1 maint: multiple names: authors list ( link)
  11. ^ Paula, Susana; Naulin, Paulette I.; Arce, Cristian; Galaz, Consttanza; Pausas, Juli G. (2016-06-01). "Lignotubers in Mediterranean basin plants". Plant Ecology. 217 (6): 661–676. CiteSeerX  10.1.1.707.1505. doi: 10.1007/s11258-015-0538-9. ISSN  1385-0237. S2CID  255103276.
  12. ^ "Fishlake National Forest - Home". www.fs.usda.gov. Retrieved 2017-12-08.
  13. ^ "Quaking Aspen - Bryce Canyon National Park (U.S. National Park Service)". www.nps.gov. Retrieved 2017-12-08.
  14. ^ Lamont, Byron B.; Maitre, D. C. Le; Cowling, R. M.; Enright, N. J. (1991-10-01). "Canopy seed storage in woody plants". The Botanical Review. 57 (4): 277–317. doi: 10.1007/BF02858770. ISSN  0006-8101. S2CID  37245625.
  15. ^ Odion, Dennis C.; Moritz, Max A.; DellaSala, Dominick A. (2010-01-01). "Alternative community states maintained by fire in the Klamath Mountains, USA". Journal of Ecology. 98 (1): 96–105. doi: 10.1111/j.1365-2745.2009.01597.x. ISSN  1365-2745.
  16. ^ Karki, 3.
  17. ^ Pyne, Stephen. "How Plants Use Fire (And How They Are Used By It)". Nova. Archived from the original on 12 September 2013. Retrieved 26 September 2013.
  18. ^ "Giant Sequoias and Fire". US National Park Service. Archived from the original on 28 April 2007. Retrieved 30 June 2009.
  19. ^ "Fire Management Assessment of the Caribbean Pine (Pinus caribea) Forest Ecosystems on Andros and Abaco Islands, Bahamas" (PDF). TNC Global Fire Initiative. The Nature Conservancy. September 2004. Archived (PDF) from the original on 1 December 2008. Retrieved 27 August 2009.
  20. ^ Bond, William J.; Midgley, Jeremy J. (1995). "Kill Thy Neighbour: An Individualistic Argument for the Evolution of Flammability". Oikos. 73 (1): 79–85. doi: 10.2307/3545728. JSTOR  3545728.
  21. ^ Mutch, Robert W. (1970-11-01). "Wildland Fires and Ecosystems--A Hypothesis". Ecology. 51 (6): 1046–1051. doi: 10.2307/1933631. ISSN  1939-9170. JSTOR  1933631.
  22. ^ Barlow, Jos; Peres, Carlos A. (2004-03-29). "Ecological responses to El Niño–induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests". Philosophical Transactions of the Royal Society B: Biological Sciences. 359 (1443): 367–380. doi: 10.1098/rstb.2003.1423. ISSN  0962-8436. PMC  1693330. PMID  15212091.
  23. ^ Smith, Jane Kapler (January 2000). "Wildland Fire in Ecosystems Effects of Fire on Fauna" (PDF).
  24. ^ a b Bonta, Mark; Gosford, Robert; Eussen, Dick; Ferguson, Nathan; Loveless, Erana; Witwer, Maxwell (2017). "Intentional Fire-Spreading by "Firehawk" Raptors in Northern Australia". Journal of Ethnobiology. 37 (4): 700. doi: 10.2993/0278-0771-37.4.700. S2CID  90806420.