From Wikipedia, the free encyclopedia
Schematic drawing of artificial phosphorylase

An artificial enzyme is a synthetic organic molecule or ion that recreates one or more functions of an enzyme. It seeks to deliver catalysis at rates and selectivity observed in naturally occurring enzymes.

History

Enzyme catalysis of chemical reactions occur with high selectivity and rate. The substrate is activated in a small part of the enzyme's macromolecule called the active site. There, the binding of a substrate close to functional groups in the enzyme causes catalysis by so-called proximity effects. It is possible to create similar catalysts from small molecules by combining substrate-binding with catalytic functional groups. Classically, artificial enzymes bind substrates using receptors such as cyclodextrin, crown ethers, and calixarene. [1] [2]

Artificial enzymes based on amino acids or peptides have expanded the field of artificial enzymes or enzyme mimics. For instance, scaffolded histidine residues mimic certain metalloproteins and enzymes such as hemocyanin, tyrosinase, and catechol oxidase. [3]

Artificial enzymes have been designed from scratch via a computational strategy using Rosetta. [4] A December 2014 publication reported active enzymes made from molecules that do not occur in nature. [5] In 2016, a book chapter entitled "Artificial Enzymes: The Next Wave" was published. [6]

Nanozymes

Nanozymes are nanomaterials with enzyme-like characteristics. [7] [8] They have been explored for applications such as biosensing, bioimaging, tumor diagnosis and therapy, and anti-biofouling. [9] [6] [10] [11] [12]

1990s

In 1996 and 1997, Dugan et al. discovered superoxide dismutase (SOD)-mimicking activities of fullerene derivatives. [13] [14]

2000s

The term "nanozyme" was coined in 2004 by Flavio Manea, Florence Bodar Houillon, Lucia Pasquato, and Paolo Scrimin. [15] A 2005 review article [16] attributed this term to "analogy with the activity of catalytic polymers (synzymes)", based on the "outstanding catalytic efficiency of some of the functional nanoparticles synthesized". In 2006, nanoceria (CeO2 nanoparticles) was reported to prevent retinal degeneration induced by intracellular peroxides (toxic reactive oxygen intermediates) in rat. [17] This was seen as indicating a possible route to a treatment for certain causes of blindness. [18] In 2007 intrinsic peroxidase-like activity of ferromagnetic nanoparticles was reported by Yan Xiyun and coworkers as suggesting a wide range of applications in, for example, medicine and environmental chemistry, and the authors designed an immunoassay based on this property. [19] [20] Hui Wei and Erkang Wang then (2008) used this property of easily prepared magnetic nanoparticles to demonstrate analytical applications to bioactive molecules, describing a colorimetric assay for hydrogen peroxide (H
2
O
2
) and a sensitive and selective platform for glucose detection. [21]

2010s

As of 2016, many review articles have appeared. [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] A book-length treatment appeared in 2015, described as providing "a broad portrait of nanozymes in the context of artificial enzyme research", [35] and a 2016 Chinese book on enzyme engineering included a chapter on nanozymes. [36]

Colorimetric applications of peroxidase mimesis in different preparations were reported in 2010 and 2011, detecting, respectively, glucose (via carboxyl‐modified graphene oxide) [37] and single-nucleotide polymorphisms (in a label-free method relying on hemin−graphene hybrid nanosheets), [38] with advantages in both cost and convenience. A use of colour to visualise tumour tissues was reported in 2012, using the peroxidase mimesis of magnetic nanoparticles coated with a protein that recognises cancer cells and binds to them. [39]

Also in 2012, nanowires of vanadium pentoxide (vanadia, V2O5) were shown to suppress marine biofouling by mimicry of vanadium haloperoxidase, with anticipated ecological benefits. [40] A study at a different centre two years later reported V2O5 showing mimicry of glutathione peroxidase in vitro in mammalian cells, suggesting future therapeutic application. [41] The same year, a carboxylated fullerene dubbed C3 was reported to be neuroprotective in a primate model of Parkinson's disease. [42]

In 2015, a supramolecular nanodevice was proposed for bioorthogonal regulation of a transitional metal nanozyme, based on encapsulating the nanozyme in a monolayer of hydrophilic gold nanoparticles, alternately isolating it from the cytoplasm or allowing access according to a gatekeeping receptor molecule controlled by competing guest species; the device, aimed at imaging and therapeutic applications, is of biomimetic size and was successful within the living cell, controlling pro- fluorophore and prodrug activation. [43] [44] An easy means of producing Cu(OH)
2
supercages was reported, along with a demonstration of their intrinsic peroxidase mimicry. [45] A scaffolded "INAzyme" ("integrated nanozyme") arrangement was described, locating hemin (a peroxidase mimic) with glucose oxidase (GOx) in sub-micron proximity, providing a fast and efficient enzyme cascade reported as monitoring cerebral brain-cell glucose dynamically in vivo. [46] A method of ionising hydrophobe-stabilised colloid nanoparticles was described, with confirmation of their enzyme mimicry in aqueous dispersion. [47]

Field trials in West Africa were announced of a magnetic nanoparticle–amplified rapid low-cost strip test for Ebola virus. [48] [49] H
2
O
2
was reported as displacing label DNA, adsorbed to nanoceria, into solution, where it fluoresces, providing a highly sensitive glucose test. [50] Oxidase-like nanoceria was used for developing self-regulated bioassays. [51] Multi-enzyme mimicking Prussian blue was developed for therapeutics. [52] A review on metal organic framework (MOF)-based enzyme mimics was published. [53] Histidine was used to modulate iron oxide nanoparticles' peroxidase-mimicking activities. [54] Gold nanoparticles' peroxidase-mimicking activities were modulated via a supramolecular strategy for cascade reactions. [55] A molecular imprinting strategy was developed to improve the selectivity of Fe3O4 nanozymes with peroxidase-like activity. [56] A new strategy was developed to enhance the peroxidase-mimicking activity of gold nanoparticles by using hot electrons. [57] Researchers designed gold nanoparticle–based integrative nanozymes with both surface-enhanced Raman scattering and peroxidase-mimicking activities for measuring glucose and lactate in living tissues. [58] Cytochrome c oxidase mimicking activity of Cu2O nanoparticles was modulated by receiving electrons from cytochrome c. [59] Fe3O4 nanoparticles were combined with glucose oxidase for tumor therapeutics. [60] Manganese dioxide nanozymes were used as cytoprotective shells. [61] An Mn3O4 nanozyme for Parkinson's disease (cellular model) was reported. [62] Heparin elimination in live rats was monitored with two-dimensional MOF-based peroxidase mimics and AG73 peptide. [63] Glucose oxidase and iron oxide nanozymes were encapsulated within multi-compartmental hydrogels for incompatible tandem reactions. [64] A cascade nanozyme biosensor was developed for detection of viable Enterobacter sakazakii. [65] An integrated nanozyme of GOx@ZIF-8(NiPd) was developed for tandem catalysis. [66] Charge-switchable nanozymes were developed. [67] Site-selective RNA splicing nanozyme was developed. [68] A nanozymes special issue in Progress in Biochemistry and Biophysics was published. [69] Mn3O4 nanozymes with the ability to scavenge reactive oxygen species were developed and showed in vivo anti-inflammatory activity. [70] A proposal entitled "A Step into the Future – Applications of Nanoparticle Enzyme Mimics" was presented. [71] Facet-dependent oxidase and peroxidase-like activities of palladium nanoparticles were reported. [72] Au@Pt multibranched nanostructures as bifunctional nanozymes were developed. [73] Ferritin-coated carbon nanozymes were developed for tumor catalytic therapy. [74] CuO nanozymes were developed to kill bacteria in a light-controlled manner. [75] Enzymatic activity of oxygenated CNT was studied. [76] Nanozymes were used to catalyze the oxidation of L-tyrosine and L-phenylalanine to dopachrome. [77] Nanozymes were presented as an emerging alternative to natural enzyme for biosensing and immunoassays. [78] A standardized assay was proposed for peroxidase-like nanozymes. [79] Semiconductor quantum dots were utilized as nucleases for site-selective photoinduced cleavage of DNA. [80] Two-dimensional MOF nanozyme-based sensor arrays were constructed for detecting phosphates and probing their enzymatic hydrolysis. [81] Nitrogen-doped carbon nanomaterials as specific peroxidase mimics were reported. [82] Nanozyme sensor arrays were developed to detect analytes from small molecules to proteins and cells. [83] A copper oxide nanozyme for Parkinson's disease was reported. [84] Exosome-like nanozyme vesicles for tumor imaging were developed. [85] A comprehensive review on nanozymes was published by Chemical Society Reviews. [8] A progress report on nanozymes was published. [86] eg occupancy as an effective descriptor was developed for the catalytic activity of perovskite oxide–based peroxidase mimics. [87] A Chemical Reviews paper on nanozymes was published. [88] A single-atom strategy was used to develop nanozymes. [89] [90] [91] [92] A nanozyme for metal-free bioinspired cascade photocatalysis was reported. [93] Chemical Society Reviews published a tutorial review on nanozymes. [94] Cascade nanozyme reactions to fix CO2 were reported. [95] Peroxidase-like gold nanoclusters were used to monitor renal clearance. [96] A copper–carbon hybrid nanozyme was developed for antibacterial therapy. [97] A ferritin nanozyme was developed to treat cerebral malaria. [98] Accounts of Chemical Research reviewed nanozymes. [99] A new strategy called strain effect was developed to modulate metal nanozyme activity. [100] Prussian blue nanozymes were used to detect hydrogen sulfide in the brains of living rats. [101] Photolyase-like CeO2 was reported. [102] An editorial on nanozymes titled "Can Nanozymes Have an Impact on Sensing?" was published. [103]

2020s

A single-atom nanozyme was developed for sepsis management. [104] Self-assembled single-atom nanozyme was developed for photodynamic therapy of tumors. [105] An ultrasound-switchable nanozyme against multidrug-resistant bacterial infection was reported. [106] A nanozyme-based H2O2 homeostasis disruptor for chemodynamic tumor therapy was reported. [107] An iridium oxide nanozyme for cascade reaction was developed for tumor therapy. [108] A book entitled Nanozymology was published. [109] A free radical–scavenging nanosponge was engineered for ischemic stroke. [110] A minireview was published on gold-conjugate-based nanozymes. [111] SnSe nanosheets as dehydrogenase mimics were developed. [112] A carbon dot–based topoisomerase I mimic was reported to cleave DNA. [113] Nanozyme sensor arrays were developed to detect pesticides. [114] Bioorthogonal nanozymes were used to treat bacterial biofilms. [115] A rhodium nanozyme was developed for treat colon disease. [116] A Fe-N-C nanozyme was developed to study drug–drug interactions. [117] A polymeric nanozyme was developed for second near-infrared photothermal cancer ferrotherapy. [118] A Cu5.4O nanozyme was reported for anti-inflammation therapy. [119] A CeO2@ZIF-8 nanozyme was developed to treat reperfusion-induced injury in ischemic stroke. [120] Peroxidase-like activity of Fe3O4 was explored to study the electrocatalytic kinetics at the single-molecule/single-particle level. [121] A Cu-TA nanozyme was fabricated to scavenge reactive oxygen species from cigarette smoke. [122] A metalloenzyme-like copper nanocluster was reported to have anticancer and imaging activities simultaneously. [123] An integrated nanozyme was developed for anti-inflammation therapy. [124] Enhanced enzyme-like catalytic activity was reported under non-equilibrium conditions for gold nanozymes. [125] A density functional theory method was proposed to predict the activities of peroxidase-like nanozymes. [126] A hydrolytic nanozyme was developed to construct an immunosensor. [127] An orally administered nanozyme was developed for inflammatory bowel disease therapy. [128] A ligand‐dependent activity engineering strategy was reported to develop a glutathione peroxidase–mimicking MIL‐47(V) metal–organic framework nanozyme for therapy. [129] A single-site nanozyme was developed for tumor therapy. [130] A SOD-like nanozyme was developed to regulate the mitochondria and neural cell function. [131] A Pd12 coordination cage as a photoregulated oxidase-like nanozyme was developed. [132] An NADPH oxidase-like nanozyme was developed. [133] A catalase-like nanozyme was developed for tumor therapy. [134] A defect‐rich adhesive molybdenum disulfide/reduced graphene oxide nanozyme was developed for anti-bacterial activity. [135] A MOF@COF nanozyme was developed for anti-bacterial activity. [136] Plasmonic nanozymes were reported. [137] Tumor microenvironment–responsive nanozyme was developed for tumor therapy. [138] A protein-engineering-inspired method was developed to design highly active nanozymes. [139] An editorial on nanozymes definition was published. [140] A nanozyme therapy for hyperuricemia and ischemic stroke was developed. [141] Chemistry World published a perspective on artificial enzymes and nanozymes. [142] A review on single-atom catalysts, including single-atom nanozymes, was published. [143] Peroxidase-like mixed-FeCo-oxide-based surface-textured nanostructures (MTex) were used for biofilm eradication. [144] A nanozyme with better kinetics than natural peroxidase was developed. [145] A self-protecting nanozyme was developed for Alzheimer's disease. [146] CuSe nanozymes was developed to treat Parkinson's disease. [147] A nanocluster-based nanozyme was developed. [148] Glucose oxidase–like gold nanoparticles combined with cyclodextran were used for chiral catalysis. [149] An artificial binuclear copper monooxygenase in a MOF was developed. [150] A review on highly efficient design of nanozymes was published. [151] Ni–Pt peroxidase mimics were developed for bioanalysis. [152] A POM-based nanozyme was reported to protect cells from reactive oxygen species. [153] A gating strategy was used to prepare selective nanozymes. [154] A manganese single-atom nanozyme was developed for tumor therapy. [155] A pH-responsive oxidase-like graphitic nanozyme was developed for selective killing of Helicobacter pylori. [156] An engineered FeN3P-centred single-atom nanozyme was developed. [157] Peroxidase- and catalase-like activities of gold nanozymes were modulated. [158] Graphdiyne–cerium oxide nanozymes were developed for radiotherapy of esophageal cancer. [159] Defect engineering was used to develop nanozyme for tumor therapy. [160] A book entitled Nanozymes for Environmental Engineering was published. [161] A palladium single-atom nanozyme was developed for tumor therapy. [162] A horseradish peroxidase–like nanozyme was developed for tumor therapy. [163] The mechanism of a GOx-like nanozyme was reported. [164] A review on nanozymes was published. [165] A mechanism study on nanonuclease-like nanozyme was reported. [166] A perspective on nanozyme definition was published. [167] Aptananozymes were developed. [168] Ceria nanozyme loaded microneedles helped hair regrowth. [169] A catalase-like platinum nanozyme was used for small extracellular vesicles analysis. [170] A book on Nanozymes: Advances and Applications was published by CRC Press. [171] A review on nanozyme catalytic turnover was published. [172] A nanozyme was developed for ratiometric molecular imaging. [173] A Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme was developed for cancer therapy. [174] Co/C as an NADH oxidase mimic was reported. [175] An iron oxide nanozyme was used to target biofilms causing tooth decay. [176] A new strategy for high-performance nanozymes was developed. [177] A high-throughput computational screening strategy was developed to discover SOD-like nanozymes. [178] An review paper entitled "Nanozyme-Enabled Analytical Chemistry" was published in Analytical Chemistry. [179] A nanozyme-based therapy for gout was reported. [180] A data-informed strategy for discovery of nanozymes was reported. [181] [182] Prussian blue nanozyme was used to alleviates neurodegeneration. [183] A dual element single-atom nanozyme was developed. [184] A valence-engineered method was developed to design antioxidant banozyme for biomedical applications. [185] Combined with small interfering RNA, ceria nanozyme was used for synergistic treatment of neurodegenerative diseases. [186] A universal assay for catalase-like nanozymes was reported. [187] A nanozyme catalyzed CRISPR assay was developed. [188] A nanozyme-based tumor-specific photo-enhanced catalytic therapy was developed. [189] Single-atom nanozymes for brain trauma therapy were reported. [190] An edge engineering strategy was developed to fabriacte single atom nanozymes. [191] A single atom nanozyme was developed to modulate tumor microenvironment for therapy. [192] A new mechanism for peroxidase-like Fe3O4 was proposed. [193] A plant virus cleaving nanozyme was reported. [194] Nanozymes is selected as one of the IUPAC Top Ten Emerging Technologies in Chemistry 2022. [195] A book entitled "Nanozymes: Design, Synthesis, and Applications" was published by ACS. [196] Nanozymes were used to remove and degrade microplastics. [197] A cold-adapted nanozyme was reported. [198] A MOF-818 nanozyme with antioxidase-mimicking activities was used to treat diabetic chronic wounds. [199] Cu single-atom nanozymes were developed for catalytic tumor-specific therapy. [200] Machine learning was employed to search for nanozymes. [201] Enzyme-like meso-bacroporous carbon sphere was developed. [202] A combination of DNAzyme and nanozyme was reported. [203] A peroxidase-like photoexcited Ru single-atom nanozyme was reported. [204] A probiotic nanozyme hydrogel for Candida vaginitis therapy was developed. [205] A method to determine the maximum velocity of a peroxidase-like nanozyme was proposed. [206] Antisenescence nanozymes for atherosclerosis therapy were reported. [207] A book entitled 'Biomedical Nanozymes: From Diagnostics to Therapeutics' was published by Springer. [208] 2023 Dalton Division Horizon Prize was awarded to High-Performance Nanozyme Designer. [209] Nanozyme-cosmetic contact lenses were developed. [210] Biogenic ferritins act as natural nanozymes were reported. [211] An integrated computational and experimental framework for inverse screening of nanozymes was developed. [212] A diatomic iron nanozyme was reported. [213] Mechanism of carbon dot-based SOD-like nanozyme was studied. [214] A hybrid ceria nanozyme was developed for arthritis therapy. [215] A chiral nanozyme was reported for Parkinson's disease. [216] A dimensionality-engineered single-atom nanozyme was reported. [217]

See also

References

  1. ^ Breslow, Ronald (2006). Artificial Enzymes. John Wiley & Sons. ISBN  978-3-527-60680-1.[ page needed]
  2. ^ Kirby, Anthony John; Hollfelder, Florian (2009). From Enzyme Models to Model Enzymes. Royal Society of Chemistry. ISBN  978-0-85404-175-6.[ page needed]
  3. ^ Albada, H. Bauke; Soulimani, Fouad; Weckhuysen, Bert M.; Liskamp, Rob M. J. (2007). "Scaffolded amino acids as a close structural mimic of type-3 copper binding sites". Chemical Communications (46): 4895–7. doi: 10.1039/b709400k. PMID  18361361.
  4. ^ Röthlisberger, Daniela; Khersonsky, Olga; Wollacott, Andrew M.; Jiang, Lin; DeChancie, Jason; Betker, Jamie; Gallaher, Jasmine L.; Althoff, Eric A.; Zanghellini, Alexandre; Dym, Orly; Albeck, Shira; Houk, Kendall N.; Tawfik, Dan S.; Baker, David (19 March 2008). "Kemp elimination catalysts by computational enzyme design". Nature. 453 (7192): 190–195. Bibcode: 2008Natur.453..190R. doi: 10.1038/nature06879. PMID  18354394.
  5. ^ "World's first artificial enzymes created using synthetic biology". University of Cambridge. 1 December 2014. Retrieved 14 December 2016.
  6. ^ a b Cheng, Hanjun; Wang, Xiaoyu; Wei, Hui (2016). "Artificial Enzymes: The Next Wave". In Wang, Zerong (ed.). Encyclopedia of Physical Organic Chemistry. American Cancer Society. doi: 10.1002/9781118468586. ISBN  978-1-118-47045-9.
  7. ^ Wei, Hui; Wang, Erkang (2013). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes". Chemical Society Reviews. 42 (14): 6060–93. doi: 10.1039/c3cs35486e. PMID  23740388. S2CID  39693417.
  8. ^ a b Wu, Jiangjiexing; Wang, Xiaoyu; Wang, Quan; Lou, Zhangping; Li, Sirong; Zhu, Yunyao; Qin, Li; Wei, Hui (2019). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II)". Chemical Society Reviews. 48 (4): 1004–1076. doi: 10.1039/c8cs00457a. PMID  30534770. S2CID  54474779.
  9. ^ 阎锡蕴 (2014). 纳米材料新特性及生物医学应用 (第1版 ed.). 北京: 科学出版社. ISBN  978-7-03-041828-9.[ page needed]
  10. ^ GAO, Li-Zeng; YAN, Xi-Yun (2013). "纳米酶的发现与应用" [Discovery and Current Application of Nanozyme]. Acta Agronomica Sinica (in Chinese). 40 (10): 892. doi: 10.3724/SP.J.1206.2013.00409.
  11. ^ Wang, Xiaoyu; Hu, Yihui; Wei, Hui (2016). "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond". Inorganic Chemistry Frontiers. 3 (1): 41–60. doi: 10.1039/c5qi00240k. S2CID  138012998.
  12. ^ Duan, Demin; Fan, Kelong; Zhang, Dexi; Tan, Shuguang; Liang, Mifang; Liu, Yang; Zhang, Jianlin; Zhang, Panhe; Liu, Wei; Qiu, Xiangguo; Kobinger, Gary P.; Fu Gao, George; Yan, Xiyun (December 2015). "Nanozyme-strip for rapid local diagnosis of Ebola". Biosensors and Bioelectronics. 74: 134–141. doi: 10.1016/j.bios.2015.05.025. PMID  26134291.
  13. ^ Dugan, Laura L.; Gabrielsen, Joseph K.; Yu, Shan P.; Lin, Tien-Sung; Choi, Dennis W. (April 1996). "Buckminsterfullerenol Free Radical Scavengers Reduce Excitotoxic and Apoptotic Death of Cultured Cortical Neurons". Neurobiology of Disease. 3 (2): 129–135. doi: 10.1006/nbdi.1996.0013. PMID  9173920. S2CID  26139075.
  14. ^ Dugan, Laura L.; Turetsky, Dorothy M.; Du, Cheng; Lobner, Doug; Wheeler, Mark; Almli, C. Robert; Shen, Clifton K.-F.; Luh, Tien-Yau; Choi, Dennis W.; Lin, Tien-Sung (19 August 1997). "Carboxyfullerenes as neuroprotective agents". Proceedings of the National Academy of Sciences of the United States of America. 94 (17): 9434–9439. Bibcode: 1997PNAS...94.9434D. doi: 10.1073/pnas.94.17.9434. PMC  23208. PMID  9256500.
  15. ^ Manea, Flavio; Houillon, Florence Bodar; Pasquato, Lucia; Scrimin, Paolo (19 November 2004). "Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts". Angewandte Chemie International Edition. 43 (45): 6165–6169. doi: 10.1002/anie.200460649. PMID  15549744.
  16. ^ Pasquato, Lucia; Pengo, Paolo; Scrimin, Paolo (January 2005). "Nanozymes: Functional Nanoparticle-based Catalysts". Supramolecular Chemistry. 17 (1–2): 163–171. doi: 10.1080/10610270412331328817. S2CID  98249602.
  17. ^ Chen, Junping; Patil, Swanand; Seal, Sudipta; McGinnis, James F. (29 October 2006). "Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides". Nature Nanotechnology. 1 (2): 142–150. Bibcode: 2006NatNa...1..142C. doi: 10.1038/nnano.2006.91. PMID  18654167. S2CID  3093558.
  18. ^ Silva, Gabriel A. (November 2006). "Seeing the benefits of ceria". Nature Nanotechnology. 1 (2): 92–94. Bibcode: 2006NatNa...1...92S. doi: 10.1038/nnano.2006.111. PMID  18654154. S2CID  205441553.
  19. ^ Gao, Lizeng; Zhuang, Jie; Nie, Leng; Zhang, Jinbin; Zhang, Yu; Gu, Ning; Wang, Taihong; Feng, Jing; Yang, Dongling; Perrett, Sarah; Yan, Xiyun (26 August 2007). "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles". Nature Nanotechnology. 2 (9): 577–583. Bibcode: 2007NatNa...2..577G. doi: 10.1038/nnano.2007.260. PMID  18654371. S2CID  10602418.
  20. ^ Perez, J. Manuel (26 August 2007). "Hidden talent". Nature Nanotechnology. 2 (9): 535–536. Bibcode: 2007NatNa...2..535P. doi: 10.1038/nnano.2007.282. PMID  18654361.
  21. ^ Wei, Hui; Wang, Erkang (March 2008). "Fe3O4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection". Analytical Chemistry. 80 (6): 2250–2254. doi: 10.1021/ac702203f. PMID  18290671.
  22. ^ Karakoti, Ajay; Singh, Sanjay; Dowding, Janet M.; Seal, Sudipta; Self, William T. (2010). "Redox-active radical scavenging nanomaterials". Chemical Society Reviews. 39 (11): 4422–32. doi: 10.1039/b919677n. PMID  20717560. S2CID  9084311.
  23. ^ Xie, Jianxin; Zhang, Xiaodan; Wang, Hui; Zheng, Huzhi; Huang, Yuming; Xie, Jianxin (October 2012). "Analytical and environmental applications of nanoparticles as enzyme mimetics". TrAC Trends in Analytical Chemistry. 39: 114–129. doi: 10.1016/j.trac.2012.03.021.
  24. ^ Wei, Hui; Wang, Erkang (2013). "Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes". Chemical Society Reviews. 42 (14): 6060–93. doi: 10.1039/c3cs35486e. PMID  23740388.
  25. ^ GAO, Li-Zeng; YAN, Xi-Yun (2013). "Discovery and Current Application of Nanozyme". Acta Agronomica Sinica. 40 (10): 892. doi: 10.3724/sp.j.1206.2013.00409.
  26. ^ He, Weiwei; Wamer, Wayne; Xia, Qingsu; Yin, Jun-jie; Fu, Peter P. (29 May 2014). "Enzyme-Like Activity of Nanomaterials". Journal of Environmental Science and Health, Part C. 32 (2): 186–211. Bibcode: 2014JESHC..32..186H. doi: 10.1080/10590501.2014.907462. PMID  24875443. S2CID  1994217.
  27. ^ Lin, Youhui; Ren, Jinsong; Qu, Xiaogang (July 2014). "Nano-Gold as Artificial Enzymes: Hidden Talents". Advanced Materials. 26 (25): 4200–4217. Bibcode: 2014AdM....26.4200L. doi: 10.1002/adma.201400238. PMID  24692212. S2CID  30805500.
  28. ^ Lin, Youhui; Ren, Jinsong; Qu, Xiaogang (17 January 2014). "Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes". Accounts of Chemical Research. 47 (4): 1097–1105. doi: 10.1021/ar400250z. PMID  24437921.
  29. ^ Prins, Leonard J. (22 June 2015). "Emergence of Complex Chemistry on an Organic Monolayer". Accounts of Chemical Research. 48 (7): 1920–1928. doi: 10.1021/acs.accounts.5b00173. PMID  26098550.
  30. ^ 丽, 郑 (2015). "纳米材料过氧化物模拟酶在比色分析及电化学传感器中的应用" [Nanomaterial-based Peroxidase Enzyme Mimics with Applications to Colorimetric Analysis and Electrochemical Sensor]. 材料导报 (in Chinese). 29 (3): 55–57, 129. doi: 10.11896/j.issn.1005-023x.2015.03.020.
  31. ^ Wang, Xiaoyu; Hu, Yihui; Wei, Hui (2016). "Nanozymes in bionanotechnology: from sensing to therapeutics and beyond". Inorganic Chemistry Frontiers. 3 (1): 41–60. doi: 10.1039/c5qi00240k.
  32. ^ Gao, Lizeng; Yan, Xiyun (22 March 2016). "Nanozymes: an emerging field bridging nanotechnology and biology". Science China Life Sciences. 59 (4): 400–402. doi: 10.1007/s11427-016-5044-3. PMID  27002958.
  33. ^ Ragg, Ruben; Tahir, Muhammad N.; Tremel, Wolfgang (May 2016). "Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics". European Journal of Inorganic Chemistry. 2016 (13–14): 1906–1915. doi: 10.1002/ejic.201501237.
  34. ^ Kuah, Evelyn; Toh, Seraphina; Yee, Jessica; Ma, Qian; Gao, Zhiqiang (13 June 2016). "Enzyme Mimics: Advances and Applications". Chemistry - A European Journal. 22 (25): 8404–8430. doi: 10.1002/chem.201504394. PMID  27062126.
  35. ^ Wang, Xiaoyu; Guo, Wenjing; Hu, Yihui; Wu, Jiangjiexing; Wei, Hui (2016). Nanozymes: Next Wave of Artificial Enzymes. Springer. ISBN  978-3-662-53068-9.[ page needed]
  36. ^ 李正强, 副 罗贵民 主编 高仁钧 (2016-05-01). 酶工程(第3版) (第3版 ed.). 化学工业出版社. ISBN  978-7-122-25760-4.[ page needed]
  37. ^ Song, Yujun; Qu, Konggang; Zhao, Chao; Ren, Jinsong; Qu, Xiaogang (5 March 2010). "Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection". Advanced Materials. 22 (19): 2206–2210. Bibcode: 2010AdM....22.2206S. doi: 10.1002/adma.200903783. PMID  20564257. S2CID  190019.
  38. ^ Guo, Yujing; Deng, Liu; Li, Jing; Guo, Shaojun; Wang, Erkang; Dong, Shaojun (10 January 2011). "Hemin−Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism". ACS Nano. 5 (2): 1282–1290. doi: 10.1021/nn1029586. PMID  21218851.
  39. ^ Fan, Kelong; Cao, Changqian; Pan, Yongxin; Lu, Di; Yang, Dongling; Feng, Jing; Song, Lina; Liang, Minmin; Yan, Xiyun (17 June 2012). "Magnetoferritin nanoparticles for targeting and visualizing tumour tissues". Nature Nanotechnology. 7 (7): 459–464. Bibcode: 2012NatNa...7..459F. doi: 10.1038/nnano.2012.90. PMID  22706697. S2CID  19859273.
  40. ^ Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang (1 July 2012). "Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation". Nature Nanotechnology. 7 (8): 530–535. Bibcode: 2012NatNa...7..530N. doi: 10.1038/nnano.2012.91. PMID  22751222.
  41. ^ Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy (21 November 2014). "An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires". Nature Communications. 5 (1): 5301. Bibcode: 2014NatCo...5.5301V. doi: 10.1038/ncomms6301. PMID  25412933.
  42. ^ Dugan, Laura L.; Tian, LinLin; Quick, Kevin L.; Hardt, Josh I.; Karimi, Morvarid; Brown, Chris; Loftin, Susan; Flores, Hugh; Moerlein, Stephen M.; Polich, John; Tabbal, Samer D.; Mink, Jonathan W.; Perlmutter, Joel S. (September 2014). "Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman primates". Annals of Neurology. 76 (3): 393–402. doi: 10.1002/ana.24220. PMC  4165715. PMID  25043598.
  43. ^ Tonga, Gulen Yesilbag; Jeong, Youngdo; Duncan, Bradley; Mizuhara, Tsukasa; Mout, Rubul; Das, Riddha; Kim, Sung Tae; Yeh, Yi-Cheun; Yan, Bo; Hou, Singyuk; Rotello, Vincent M. (23 June 2015). "Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts". Nature Chemistry. 7 (7): 597–603. Bibcode: 2015NatCh...7..597T. doi: 10.1038/nchem.2284. PMC  5697749. PMID  26100809.
  44. ^ Unciti-Broceta, Asier (23 June 2015). "Rise of the nanobots". Nature Chemistry. 7 (7): 538–539. Bibcode: 2015NatCh...7..538U. doi: 10.1038/nchem.2291. PMID  26100798.
  45. ^ Cai, Ren; Yang, Dan; Peng, Shengjie; Chen, Xigao; Huang, Yun; Liu, Yuan; Hou, Weijia; Yang, Shengyuan; Liu, Zhenbao; Tan, Weihong (23 October 2015). "Single Nanoparticle to 3D Supercage: Framing for an Artificial Enzyme System". Journal of the American Chemical Society. 137 (43): 13957–13963. doi: 10.1021/jacs.5b09337. PMC  4927331. PMID  26464081.
  46. ^ Cheng, Hanjun; Zhang, Lei; He, Jian; Guo, Wenjing; Zhou, Zhengyang; Zhang, Xuejin; Nie, Shuming; Wei, Hui (6 May 2016). "Integrated Nanozymes with Nanoscale Proximity for in Vivo Neurochemical Monitoring in Living Brains". Analytical Chemistry. 88 (10): 5489–5497. doi: 10.1021/acs.analchem.6b00975. PMID  27067749.
  47. ^ Liu, Yuan; Purich, Daniel L.; Wu, Cuichen; Wu, Yuan; Chen, Tao; Cui, Cheng; Zhang, Liqin; Cansiz, Sena; Hou, Weijia; Wang, Yanyue; Yang, Shengyuan; Tan, Weihong (20 November 2015). "Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties". Journal of the American Chemical Society. 137 (47): 14952–14958. doi: 10.1021/jacs.5b08533. PMC  4898269. PMID  26562739.
  48. ^ "New Ebola test to make diagnosis easier, faster and cheaper". Elsevier. 1 December 2015. Archived 2016-08-14 at the Wayback Machine
  49. ^ Duan, Demin; Fan, Kelong; Zhang, Dexi; Tan, Shuguang; Liang, Mifang; Liu, Yang; Zhang, Jianlin; Zhang, Panhe; Liu, Wei; Qiu, Xiangguo; Kobinger, Gary P.; Fu Gao, George; Yan, Xiyun (December 2015). "Nanozyme-strip for rapid local diagnosis of Ebola". Biosensors and Bioelectronics. 74: 134–141. doi: 10.1016/j.bios.2015.05.025. PMID  26134291.
  50. ^ Liu, Biwu; Sun, Ziyi; Huang, Po-Jung Jimmy; Liu, Juewen (20 January 2015). "Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum". Journal of the American Chemical Society. 137 (3): 1290–1295. doi: 10.1021/ja511444e. PMID  25574932.
  51. ^ Cheng, Hanjun; Lin, Shichao; Muhammad, Faheem; Lin, Ying-Wu; Wei, Hui (November 2016). "Rationally Modulate the Oxidase-like Activity of Nanoceria for Self-Regulated Bioassays". ACS Sensors. 1 (11): 1336–1343. doi: 10.1021/acssensors.6b00500.
  52. ^ Zhang, Wei; Hu, Sunling; Yin, Jun-Jie; He, Weiwei; Lu, Wei; Ma, Ming; Gu, Ning; Zhang, Yu (9 March 2016). "Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers". Journal of the American Chemical Society. 138 (18): 5860–5865. doi: 10.1021/jacs.5b12070. PMID  26918394. S2CID  207162387.
  53. ^ Nath, Ipsita; Chakraborty, Jeet; Verpoort, Francis (2016). "Metal organic frameworks mimicking natural enzymes: a structural and functional analogy". Chemical Society Reviews. 45 (15): 4127–4170. doi: 10.1039/c6cs00047a. PMID  27251115.
  54. ^ Fan, Kelong; Wang, Hui; Xi, Juqun; Liu, Qi; Meng, Xiangqin; Duan, Demin; Gao, Lizeng; Yan, Xiyun (2017). "Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site". Chemical Communications. 53 (2): 424–427. doi: 10.1039/c6cc08542c. PMID  27959363. S2CID  1204530.
  55. ^ Zhao, Yan; Huang, Yucheng; Zhu, Hui; Zhu, Qingqing; Xia, Yunsheng (16 December 2016). "Three-in-One: Sensing, Self-Assembly, and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles". Journal of the American Chemical Society. 138 (51): 16645–16654. doi: 10.1021/jacs.6b07590. PMID  27983807.
  56. ^ Zhang, Zijie; Zhang, Xiaohan; Liu, Biwu; Liu, Juewen (5 April 2017). "Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity". Journal of the American Chemical Society. 139 (15): 5412–5419. doi: 10.1021/jacs.7b00601. PMID  28345903.
  57. ^ Wang, Chen; Shi, Yi; Dan, Yuan-Yuan; Nie, Xing-Guo; Li, Jian; Xia, Xing-Hua (17 May 2017). "Enhanced Peroxidase-Like Performance of Gold Nanoparticles by Hot Electrons". Chemistry - A European Journal. 23 (28): 6717–6723. doi: 10.1002/chem.201605380. PMID  28217846.
  58. ^ Hu, Yihui; Cheng, Hanjun; Zhao, Xiaozhi; Wu, Jiangjiexing; Muhammad, Faheem; Lin, Shichao; He, Jian; Zhou, Liqi; Zhang, Chengping; Deng, Yu; Wang, Peng; Zhou, Zhengyang; Nie, Shuming; Wei, Hui (June 2017). "Surface-Enhanced Raman Scattering Active Gold Nanoparticles with Enzyme-Mimicking Activities for Measuring Glucose and Lactate in Living Tissues". ACS Nano. 11 (6): 5558–5566. doi: 10.1021/acsnano.7b00905. PMID  28549217.
  59. ^ Chen, Ming; Wang, Zhonghua; Shu, Jinxia; Jiang, Xiaohui; Wang, Wei; Shi, Zhen-Hua; Lin, Ying-Wu (28 July 2017). "Mimicking a Natural Enzyme System: Cytochrome c Oxidase-Like Activity of Cu2O Nanoparticles by Receiving Electrons from Cytochrome c". Inorganic Chemistry. 56 (16): 9400–9403. doi: 10.1021/acs.inorgchem.7b01393. PMID  28753305.
  60. ^ Huo, Minfeng; Wang, Liying; Chen, Yu; Shi, Jianlin (25 August 2017). "Tumor-selective catalytic nanomedicine by nanocatalyst delivery". Nature Communications. 8 (1): 357. Bibcode: 2017NatCo...8..357H. doi: 10.1038/s41467-017-00424-8. PMC  5572465. PMID  28842577.
  61. ^ Li, Wei; Liu, Zhen; Liu, Chaoqun; Guan, Yijia; Ren, Jinsong; Qu, Xiaogang (23 October 2017). "Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation". Angewandte Chemie International Edition. 56 (44): 13661–13665. doi: 10.1002/anie.201706910. PMID  28884490.
  62. ^ Singh, Namrata; Savanur, Mohammed Azharuddin; Srivastava, Shubhi; D'Silva, Patrick; Mugesh, Govindasamy (6 November 2017). "A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson's Disease Model". Angewandte Chemie International Edition. 56 (45): 14267–14271. doi: 10.1002/anie.201708573. PMID  28922532.
  63. ^ Cheng, Hanjun; Liu, Yufeng; Hu, Yihui; Ding, Yubin; Lin, Shichao; Cao, Wen; Wang, Qian; Wu, Jiangjiexing; Muhammad, Faheem; Zhao, Xiaozhi; Zhao, Dan; Li, Zhe; Xing, Hang; Wei, Hui (23 October 2017). "Monitoring of Heparin Activity in Live Rats Using Metal–Organic Framework Nanosheets as Peroxidase Mimics". Analytical Chemistry. 89 (21): 11552–11559. doi: 10.1021/acs.analchem.7b02895. PMID  28992698.
  64. ^ Tan, Hongliang; Guo, Song; Dinh, Ngoc-Duy; Luo, Rongcong; Jin, Lin; Chen, Chia-Hung (22 September 2017). "Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions". Nature Communications. 8 (1): 663. Bibcode: 2017NatCo...8..663T. doi: 10.1038/s41467-017-00757-4. PMC  5610232. PMID  28939810.
  65. ^ Zhang, Li; Chen, Yuting; Cheng, Nan; Xu, Yuancong; Huang, Kunlun; Luo, Yunbo; Wang, Peixia; Duan, Demin; Xu, Wentao (20 September 2017). "Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor". Analytical Chemistry. 89 (19): 10194–10200. doi: 10.1021/acs.analchem.7b01266. PMID  28881135.
  66. ^ Wang, Qingqing; Zhang, Xueping; Huang, Liang; Zhang, Zhiquan; Dong, Shaojun (11 December 2017). "GOx@ZIF-8(NiPd) Nanoflower: An Artificial Enzyme System for Tandem Catalysis". Angewandte Chemie International Edition. 56 (50): 16082–16085. doi: 10.1002/anie.201710418. PMID  29119659.
  67. ^ Gupta, Akash; Das, Riddha; Yesilbag Tonga, Gulen; Mizuhara, Tsukasa; Rotello, Vincent M. (21 December 2017). "Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections". ACS Nano. 12 (1): 89–94. doi: 10.1021/acsnano.7b07496. PMC  5846330. PMID  29244484.
  68. ^ Petree, Jessica R.; Yehl, Kevin; Galior, Kornelia; Glazier, Roxanne; Deal, Brendan; Salaita, Khalid (19 December 2017). "Site-Selective RNA Splicing Nanozyme: DNAzyme and RtcB Conjugates on a Gold Nanoparticle". ACS Chemical Biology. 13 (1): 215–224. doi: 10.1021/acschembio.7b00437. PMC  6085866. PMID  29155548.
  69. ^ "An issue for nanozymes research". www.pibb.ac.cn. Retrieved 2018-02-06.
  70. ^ Yao, Jia; Cheng, Yuan; Zhou, Min; Zhao, Sheng; Lin, Shichao; Wang, Xiaoyu; Wu, Jiangjiexing; Li, Sirong; Wei, Hui (2018). "ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation". Chemical Science. 9 (11): 2927–2933. doi: 10.1039/c7sc05476a. PMC  5915792. PMID  29732076.
  71. ^ Korschelt, Karsten; Tahir, Muhammad Nawaz; Tremel, Wolfgang (11 July 2018). "A Step into the Future: Applications of Nanoparticle Enzyme Mimics". Chemistry - A European Journal. 24 (39): 9703–9713. doi: 10.1002/chem.201800384. PMID  29447433.
  72. ^ Fang, Ge; Li, Weifeng; Shen, Xiaomei; Perez-Aguilar, Jose Manuel; Chong, Yu; Gao, Xingfa; Chai, Zhifang; Chen, Chunying; Ge, Cuicui; Zhou, Ruhong (9 January 2018). "Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria". Nature Communications. 9 (1): 129. Bibcode: 2018NatCo...9..129F. doi: 10.1038/s41467-017-02502-3. PMC  5760645. PMID  29317632.
  73. ^ Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui (26 March 2018). "Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes". ACS Applied Materials & Interfaces. 10 (15): 12954–12959. doi: 10.1021/acsami.7b17945. PMID  29577720.
  74. ^ Fan, Kelong; Xi, Juqun; Fan, Lei; Wang, Peixia; Zhu, Chunhua; Tang, Yan; Xu, Xiangdong; Liang, Minmin; Jiang, Bing; Yan, Xiyun; Gao, Lizeng (12 April 2018). "In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy". Nature Communications. 9 (1): 1440. Bibcode: 2018NatCo...9.1440F. doi: 10.1038/s41467-018-03903-8. PMC  5897348. PMID  29650959.
  75. ^ Karim, Md. Nurul; Singh, Mandeep; Weerathunge, Pabudi; Bian, Pengju; Zheng, Rongkun; Dekiwadia, Chaitali; Ahmed, Taimur; Walia, Sumeet; Della Gaspera, Enrico; Singh, Sanjay; Ramanathan, Rajesh; Bansal, Vipul (6 March 2018). "Visible-Light-Triggered Reactive-Oxygen-Species-Mediated Antibacterial Activity of Peroxidase-Mimic CuO Nanorods". ACS Applied Nano Materials. 1 (4): 1694–1704. doi: 10.1021/acsanm.8b00153.
  76. ^ Wang, Huan; Li, Penghui; Yu, Dongqin; Zhang, Yan; Wang, Zhenzhen; Liu, Chaoqun; Qiu, Hao; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang (15 May 2018). "Unraveling the Enzymatic Activity of Oxygenated Carbon Nanotubes and Their Application in the Treatment of Bacterial Infections". Nano Letters. 18 (6): 3344–3351. Bibcode: 2018NanoL..18.3344W. doi: 10.1021/acs.nanolett.7b05095. PMID  29763562.
  77. ^ Hou, Jianwen; Vázquez-González, Margarita; Fadeev, Michael; Liu, Xia; Lavi, Ronit; Willner, Itamar (10 May 2018). "Catalyzed and Electrocatalyzed Oxidation of l-Tyrosine and l-Phenylalanine to Dopachrome by Nanozymes". Nano Letters. 18 (6): 4015–4022. Bibcode: 2018NanoL..18.4015H. doi: 10.1021/acs.nanolett.8b01522. PMID  29745234.
  78. ^ Wang, Qingqing; Wei, Hui; Zhang, Zhiquan; Wang, Erkang; Dong, Shaojun (August 2018). "Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay". TrAC Trends in Analytical Chemistry. 105: 218–224. doi: 10.1016/j.trac.2018.05.012.
  79. ^ Jiang, Bing; Duan, Demin; Gao, Lizeng; Zhou, Mengjie; Fan, Kelong; Tang, Yan; Xi, Juqun; Bi, Yuhai; Tong, Zhou; Gao, George Fu; Xie, Ni; Tang, Aifa; Nie, Guohui; Liang, Minmin; Yan, Xiyun (2 July 2018). "Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes". Nature Protocols. 13 (7): 1506–1520. doi: 10.1038/s41596-018-0001-1. PMID  29967547. S2CID  49558769.
  80. ^ Sun, Maozhong; Xu, Liguang; Qu, Aihua; Zhao, Peng; Hao, Tiantian; Ma, Wei; Hao, Changlong; Wen, Xiaodong; Colombari, Felippe M.; de Moura, Andre F.; Kotov, Nicholas A.; Xu, Chuanlai; Kuang, Hua (20 July 2018). "Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles". Nature Chemistry. 10 (8): 821–830. Bibcode: 2018NatCh..10..821S. doi: 10.1038/s41557-018-0083-y. PMID  30030537. S2CID  51705012.
  81. ^ Qin, Li; Wang, Xiaoyu; Liu, Yufeng; Wei, Hui (25 July 2018). "2D-Metal–Organic-Framework-Nanozyme Sensor Arrays for Probing Phosphates and Their Enzymatic Hydrolysis". Analytical Chemistry. 90 (16): 9983–9989. doi: 10.1021/acs.analchem.8b02428. PMID  30044077. S2CID  51715627.
  82. ^ Hu, Yihui; Gao, Xuejiao J.; Zhu, Yunyao; Muhammad, Faheem; Tan, Shihua; Cao, Wen; Lin, Shichao; Jin, Zhong; Gao, Xingfa; Wei, Hui (20 August 2018). "Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics". Chemistry of Materials. 30 (18): 6431–6439. doi: 10.1021/acs.chemmater.8b02726. S2CID  106300299.
  83. ^ Wang, Xiaoyu; Qin, Li; Zhou, Min; Lou, Zhangping; Wei, Hui (3 September 2018). "Nanozyme Sensor Arrays for Detecting Versatile Analytes from Small Molecules to Proteins and Cells". Analytical Chemistry. 90 (19): 11696–11702. doi: 10.1021/acs.analchem.8b03374. PMID  30175585. S2CID  52144288.
  84. ^ Hao, Changlong; Qu, Aihua; Xu, Liguang; Sun, Maozhong; Zhang, Hongyu; Xu, Chuanlai; Kuang, Hua (12 December 2018). "Chiral Molecule-mediated Porous CuxO Nanoparticle Clusters with Antioxidation Activity for Ameliorating Parkinson's Disease". Journal of the American Chemical Society. 141 (2): 1091–1099. doi: 10.1021/jacs.8b11856. PMID  30540450. S2CID  195670970.
  85. ^ Ding, Hui; Cai, Yanjuan; Gao, Lizeng; Liang, Minmin; Miao, Beiping; Wu, Hanwei; Liu, Yang; Xie, Ni; Tang, Aifa; Fan, Kelong; Yan, Xiyun; Nie, Guohui (12 December 2018). "Exosome-like Nanozyme Vesicles for H2O2-Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma". Nano Letters. 19 (1): 203–209. doi: 10.1021/acs.nanolett.8b03709. PMID  30539641. S2CID  54475613.
  86. ^ Wang, Hui; Wan, Kaiwei; Shi, Xinghua (27 December 2018). "Recent Advances in Nanozyme Research". Advanced Materials. 31 (45): 1805368. doi: 10.1002/adma.201805368. PMID  30589120. S2CID  58661537.
  87. ^ Wang, Xiaoyu; Gao, Xuejiao J.; Qin, Li; Wang, Changda; Song, Li; Zhou, Yong-Ning; Zhu, Guoyin; Cao, Wen; Lin, Shichao; Zhou, Liqi; Wang, Kang; Zhang, Huigang; Jin, Zhong; Wang, Peng; Gao, Xingfa; Wei, Hui (11 February 2019). "eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics". Nature Communications. 10 (1): 704. Bibcode: 2019NatCo..10..704W. doi: 10.1038/s41467-019-08657-5. PMC  6370761. PMID  30741958.
  88. ^ Huang, Yanyan; Ren, Jinsong; Qu, Xiaogang (25 February 2019). "Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications". Chemical Reviews. 119 (6): 4357–4412. doi: 10.1021/acs.chemrev.8b00672. PMID  30801188. S2CID  73479528.
  89. ^ Huang, Liang; Chen, Jinxing; Gan, Linfeng; Wang, Jin; Dong, Shaojun (3 May 2019). "Single-atom nanozymes". Science Advances. 5 (5): eaav5490. Bibcode: 2019SciA....5.5490H. doi: 10.1126/sciadv.aav5490. PMC  6499548. PMID  31058221.
  90. ^ Ma, Wenjie; Mao, Junjie; Yang, Xiaoti; Pan, Cong; Chen, Wenxing; Wang, Ming; Yu, Ping; Mao, Lanqun; Li, Yadong (2019). "A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection". Chemical Communications. 55 (2): 159–162. doi: 10.1039/c8cc08116f. PMID  30465670. S2CID  53722839.
  91. ^ Zhao, Chao; Xiong, Can; Liu, Xiaokang; Qiao, Man; Li, Zhijun; Yuan, Tongwei; Wang, Jing; Qu, Yunteng; Wang, XiaoQian; Zhou, Fangyao; Xu, Qian; Wang, Shiqi; Chen, Min; Wang, Wenyu; Li, Yafei; Yao, Tao; Wu, Yuen; Li, Yadong (2019). "Unraveling the enzyme-like activity of heterogeneous single atom catalyst". Chemical Communications. 55 (16): 2285–2288. doi: 10.1039/c9cc00199a. PMID  30694288. S2CID  59339217.
  92. ^ Xu, Bolong; Wang, Hui; Wang, Weiwei; Gao, Lizeng; Li, Shanshan; Pan, Xueting; Wang, Hongyu; Yang, Hailong; Meng, Xiangqin; Wu, Qiuwen; Zheng, Lirong; Chen, Shenming; Shi, Xinghua; Fan, Kelong; Yan, Xiyun; Liu, Huiyu (April 2019). "A Single-Atom Nanozyme for Wound Disinfection Applications". Angewandte Chemie International Edition. 58 (15): 4911–4916. doi: 10.1002/anie.201813994. PMID  30697885. S2CID  59411242.
  93. ^ Zhang, Peng; Sun, Dengrong; Cho, Ara; Weon, Seunghyun; Lee, Seonggyu; Lee, Jinwoo; Han, Jeong Woo; Kim, Dong-Pyo; Choi, Wonyong (26 February 2019). "Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis". Nature Communications. 10 (1): 940. Bibcode: 2019NatCo..10..940Z. doi: 10.1038/s41467-019-08731-y. PMC  6391499. PMID  30808912.
  94. ^ Jiang, Dawei; Ni, Dalong; Rosenkrans, Zachary T.; Huang, Peng; Yan, Xiyun; Cai, Weibo (2019). "Nanozyme: new horizons for responsive biomedical applications". Chemical Society Reviews. 48 (14): 3683–3704. doi: 10.1039/c8cs00718g. PMC  6696937. PMID  31119258.
  95. ^ O'Mara, Peter B.; Wilde, Patrick; Benedetti, Tania M.; Andronescu, Corina; Cheong, Soshan; Gooding, J. Justin; Tilley, Richard D.; Schuhmann, Wolfgang (25 August 2019). "Cascade Reactions in Nanozymes: Spatially Separated Active Sites inside Ag-Core–Porous-Cu-Shell Nanoparticles for Multistep Carbon Dioxide Reduction to Higher Organic Molecules". Journal of the American Chemical Society. 141 (36): 14093–14097. doi: 10.1021/jacs.9b07310. PMC  7551659. PMID  31448598.
  96. ^ Loynachan, Colleen N.; Soleimany, Ava P.; Dudani, Jaideep S.; Lin, Yiyang; Najer, Adrian; Bekdemir, Ahmet; Chen, Qu; Bhatia, Sangeeta N.; Stevens, Molly M. (2 September 2019). "Renal clearable catalytic gold nanoclusters for in vivo disease monitoring". Nature Nanotechnology. 14 (9): 883–890. Bibcode: 2019NatNa..14..883L. doi: 10.1038/s41565-019-0527-6. PMC  7045344. PMID  31477801.
  97. ^ Xi, Juqun; Wei, Gen; An, Lanfang; Xu, Zhuobin; Xu, Zhilong; Fan, Lei; Gao, Lizeng (3 October 2019). "Copper/Carbon Hybrid Nanozyme: Tuning Catalytic Activity by the Copper State for Antibacterial Therapy". Nano Letters. 19 (11): 7645–7654. Bibcode: 2019NanoL..19.7645X. doi: 10.1021/acs.nanolett.9b02242. PMID  31580681. S2CID  206750807.
  98. ^ Zhao, Shuai; Duan, Hongxia; Yang, Yili; Yan, Xiyun; Fan, Kelong (November 2019). "Fenozyme Protects the Integrity of the Blood–Brain Barrier against Experimental Cerebral Malaria". Nano Letters. 19 (12): 8887–8895. Bibcode: 2019NanoL..19.8887Z. doi: 10.1021/acs.nanolett.9b03774. PMID  31671939. S2CID  207815491.
  99. ^ Liang, Minmin; Yan, Xiyun (5 July 2019). "Nanozymes: From New Concepts, Mechanisms, and Standards to Applications". Accounts of Chemical Research. 52 (8): 2190–2200. doi: 10.1021/acs.accounts.9b00140. PMID  31276379. S2CID  195812591.
  100. ^ Xi, Zheng; Cheng, Xun; Gao, Zhuangqiang; Wang, Mengjing; Cai, Tong; Muzzio, Michelle; Davidson, Edwin; Chen, Ou; Jung, Yeonwoong; Sun, Shouheng; Xu, Ye; Xia, Xiaohu (10 December 2019). "Strain Effect in Palladium Nanostructures as Nanozymes". Nano Letters. 20 (1): 272–277. doi: 10.1021/acs.nanolett.9b03782. OSTI  1594049. PMID  31821008. S2CID  209313254.
  101. ^ Wang, Chao; Wang, Manchao; Zhang, Wang; Liu, Jia; Lu, Mingju; Li, Kai; Lin, Yuqing (13 December 2019). "Integrating Prussian Blue Analog-Based Nanozyme and Online Visible Light Absorption Approach for Continuous Hydrogen Sulfide Monitoring in Brains of Living Rats". Analytical Chemistry. 92 (1): 662–667. doi: 10.1021/acs.analchem.9b04931. PMID  31834784. S2CID  209357162.
  102. ^ Tian, Zhimin; Yao, Tianzhu; Qu, Chaoyi; Zhang, Sai; Li, Xuhui; Qu, Yongquan (29 October 2019). "Photolyase-Like Catalytic Behavior of CeO2". Nano Letters. 19 (11): 8270–8277. Bibcode: 2019NanoL..19.8270T. doi: 10.1021/acs.nanolett.9b03836. PMID  31661288. S2CID  204970215.
  103. ^ Gooding, J. Justin (27 September 2019). "Can Nanozymes Have an Impact on Sensing?". ACS Sensors. 4 (9): 2213–2214. doi: 10.1021/acssensors.9b01760. PMID  31558030.
  104. ^ Cao, Fangfang; Zhang, Lu; You, Yawen; Zheng, Lirong; Ren, Jinsong; Qu, Xiaogang (12 February 2020). "An Enzyme-Mimicking Single-Atom Catalyst as an Efficient Multiple Reactive Oxygen and Nitrogen Species Scavenger for Sepsis Management". Angewandte Chemie. 132 (13): 5146–5153. doi: 10.1002/ange.201912182. S2CID  214232731.
  105. ^ Wang, Dongdong; Wu, Huihui; Phua, Soo Zeng Fiona; Yang, Guangbao; Qi Lim, Wei; Gu, Long; Qian, Cheng; Wang, Haibao; Guo, Zhen; Chen, Hongzhong; Zhao, Yanli (17 January 2020). "Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor". Nature Communications. 11 (1): 357. Bibcode: 2020NatCo..11..357W. doi: 10.1038/s41467-019-14199-7. PMC  6969186. PMID  31953423.
  106. ^ Sun, Duo; Pang, Xin; Cheng, Yi; Ming, Jiang; Xiang, Sijin; Zhang, Chang; Lv, Peng; Chu, Chengchao; Chen, Xiaolan; Liu, Gang; Zheng, Nanfeng (5 February 2020). "Ultrasound-Switchable Nanozyme Augments Sonodynamic Therapy against Multidrug-Resistant Bacterial Infection". ACS Nano. 14 (2): 2063–2076. doi: 10.1021/acsnano.9b08667. PMID  32022535. S2CID  211034499.
  107. ^ Sang, Yanjuan; Cao, Fangfang; Li, Wei; Zhang, Lu; You, Yawen; Deng, Qingqing; Dong, Kai; Ren, Jinsong; Qu, Xiaogang (26 February 2020). "Bioinspired Construction of a Nanozyme-Based H2O2 Homeostasis Disruptor for Intensive Chemodynamic Therapy". Journal of the American Chemical Society. 142 (11): 5177–5183. doi: 10.1021/jacs.9b12873. PMID  32100536. S2CID  211524485.
  108. ^ Zhen, Wenyao; Liu, Yang; Wang, Wei; Zhang, Mengchao; Hu, Wenxue; Jia, Xiaodan; Wang, Chao; Jiang, Xiue (1 April 2020). "Specific 'Unlocking' of a Nanozyme-Based Butterfly Effect To Break the Evolutionary Fitness of Chaotic Tumors". Angewandte Chemie International Edition. 59 (24): 9491–9497. doi: 10.1002/anie.201916142. PMID  32100926. S2CID  211523638.
  109. ^ Yan, Xiyun (2020). Nanozymology. Nanostructure Science and Technology. doi: 10.1007/978-981-15-1490-6. ISBN  978-981-15-1489-0. S2CID  210954266.[ page needed]
  110. ^ Shi, Jinjin; Yu, Wenyan; Xu, Lihua; Yin, Na; Liu, Wei; Zhang, Kaixiang; Liu, Junjie; Zhang, Zhenzhong (2020). "Bioinspired Nanosponge for Salvaging Ischemic Stroke via Free Radical Scavenging and Self-Adapted Oxygen Regulating". Nano Letters. 20 (1): 780–789. Bibcode: 2020NanoL..20..780S. doi: 10.1021/acs.nanolett.9b04974. PMID  31830790. S2CID  209342956.
  111. ^ Mikolajczak, Dorian J.; Berger, Allison A.; Koksch, Beate (2020). "Catalytically Active Peptide-Gold Nanoparticle Conjugates: Prospecting for Artificial Enzymes". Angewandte Chemie. 132 (23): 8858–8867. Bibcode: 2020AngCh.132.8858M. doi: 10.1002/ange.201908625.
  112. ^ Gao, Meng; Wang, Zhenzhen; Zheng, Huizhen; Wang, Li; Xu, Shujuan; Liu, Xi; Li, Wei; Pan, Yanxia; Wang, Weili; Cai, Xiaoming; Wu, Ren'an; Gao, Xingfa; Li, Ruibin (2020). "Two-Dimensional Tin Selenide (Sn Se) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism". Angewandte Chemie. 132 (9): 3647–3652. Bibcode: 2020AngCh.132.3647G. doi: 10.1002/ange.201913035. S2CID  241399324.
  113. ^ Li, Feng; Li, Shuai; Guo, Xiaocui; Dong, Yuhang; Yao, Chi; Liu, Yangping; Song, Yuguang; Tan, Xiaoli; Gao, Lizeng; Yang, Dayong (25 March 2020). "Chiral carbon dots mimicking topoisomerase I to enantioselectively mediate topological rearrangement of supercoiled DNA". Angewandte Chemie International Edition. 59 (27): 11087–11092. doi: 10.1002/anie.202002904. PMID  32212366. S2CID  226196486.
  114. ^ Zhu, Yunyao; Wu, Jiangjiexing; Han, Lijun; Wang, Xiaoyu; Li, Wei; Guo, Hongchao; Wei, Hui (4 May 2020). "Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides". Analytical Chemistry. 92 (11): 7444–7452. doi: 10.1021/acs.analchem.9b05110. PMID  32363854. S2CID  218492816.
  115. ^ Huang, Rui; Li, Cheng-Hsuan; Cao-Milán, Roberto; He, Luke D.; Makabenta, Jessa Marie; Zhang, Xianzhi; Yu, Erlei; Rotello, Vincent M. (28 May 2020). "Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms". Journal of the American Chemical Society. 142 (24): 10723–10729. doi: 10.1021/jacs.0c01758. PMC  7339739. PMID  32464057.
  116. ^ Miao, Zhaohua; Jiang, Shanshan; Ding, Mengli; Sun, Siyuan; Ma, Yan; Younis, Muhammad Rizwan; He, Gang; Wang, Jingguo; Lin, Jing; Cao, Zhong; Huang, Peng; Zha, Zhengbao (29 April 2020). "Ultrasmall Rhodium Nanozyme with RONS Scavenging and Photothermal Activities for Anti-Inflammation and Antitumor Theranostics of Colon Diseases". Nano Letters. 20 (5): 3079–3089. Bibcode: 2020NanoL..20.3079M. doi: 10.1021/acs.nanolett.9b05035. PMID  32348149. S2CID  217592822.
  117. ^ Xu, Yuan; Xue, Jing; Zhou, Qing; Zheng, Yongjun; Chen, Xinghua; Liu, Songqin; Shen, Yanfei; Zhang, Yuanjian (8 June 2020). "Fe-N-C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug-Drug Interaction". Angewandte Chemie International Edition. 59 (34): 14498–14503. doi: 10.1002/anie.202003949. PMID  32515070. S2CID  219549595.
  118. ^ Jiang, Yuyan; Zhao, Xuhui; Huang, Jiaguo; Li, Jingchao; Upputuri, Paul Kumar; Sun, He; Han, Xiao; Pramanik, Manojit; Miao, Yansong; Duan, Hongwei; Pu, Kanyi; Zhang, Ruiping (20 April 2020). "Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy". Nature Communications. 11 (1): 1857. Bibcode: 2020NatCo..11.1857J. doi: 10.1038/s41467-020-15730-x. PMC  7170847. PMID  32312987.
  119. ^ Liu, Tengfei; Xiao, Bowen; Xiang, Fei; Tan, Jianglin; Chen, Zhuo; Zhang, Xiaorong; Wu, Chengzhou; Mao, Zhengwei; Luo, Gaoxing; Chen, Xiaoyuan; Deng, Jun (3 June 2020). "Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases". Nature Communications. 11 (1): 2788. Bibcode: 2020NatCo..11.2788L. doi: 10.1038/s41467-020-16544-7. PMC  7270130. PMID  32493916.
  120. ^ He, Lizhen; Huang, Guanning; Liu, Hongxing; Sang, Chengcheng; Liu, Xinxin; Chen, Tianfeng (1 March 2020). "Highly bioactive zeolitic imidazolate framework-8–capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke". Science Advances. 6 (12): eaay9751. Bibcode: 2020SciA....6.9751H. doi: 10.1126/sciadv.aay9751. PMC  7080448. PMID  32206718.
  121. ^ Xiao, Yi; Hong, Jaeyoung; Wang, Xiao; Chen, Tao; Hyeon, Taeghwan; Xu, Weilin (16 July 2020). "Revealing Kinetics of Two-Electron Oxygen Reduction Reaction at Single-Molecule Level". Journal of the American Chemical Society. 142 (30): 13201–13209. doi: 10.1021/jacs.0c06020. PMID  32628842. S2CID  220387010.
  122. ^ Lin, Shichao; Cheng, Yuan; Zhang, He; Wang, Xiaoyu; Zhang, Yuye; Zhang, Yuanjian; Miao, Leiying; Zhao, Xiaozhi; Wei, Hui (29 August 2019). "Copper Tannic Acid Coordination Nanosheet: A Potent Nanozyme for Scavenging ROS from Cigarette Smoke". Small. 16 (27): 1902123. doi: 10.1002/smll.201902123. PMID  31468655. S2CID  201672628.
  123. ^ Gao, Liang; Zhang, Ya; Zhao, Lina; Niu, Wenchao; Tang, Yuhua; Gao, Fuping; Cai, Pengju; Yuan, Qing; Wang, Xiayan; Jiang, Huaidong; Gao, Xueyun (1 July 2020). "An artificial metalloenzyme for catalytic cancer-specific DNA cleavage and operando imaging". Science Advances. 6 (29): eabb1421. Bibcode: 2020SciA....6.1421G. doi: 10.1126/sciadv.abb1421. PMC  7439319. PMID  32832637. S2CID  220601168.
  124. ^ Liu, Yufeng; Cheng, Yuan; Zhang, He; Zhou, Min; Yu, Yijun; Lin, Shichao; Jiang, Bo; Zhao, Xiaozhi; Miao, Leiying; Wei, Chuan-Wan; Liu, Quanyi; Lin, Ying-Wu; Du, Yan; Butch, Christopher J.; Wei, Hui (1 July 2020). "Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy". Science Advances. 6 (29): eabb2695. Bibcode: 2020SciA....6.2695L. doi: 10.1126/sciadv.abb2695. PMC  7439611. PMID  32832640. S2CID  220601175.
  125. ^ Chen, Rui; Neri, Simona; Prins, Leonard J. (20 July 2020). "Enhanced catalytic activity under non-equilibrium conditions". Nature Nanotechnology. 15 (10): 868–874. Bibcode: 2020NatNa..15..868C. doi: 10.1038/s41565-020-0734-1. hdl: 11577/3351418. PMID  32690887. S2CID  220656706.
  126. ^ Shen, Xiaomei; Wang, Zhenzhen; Gao, Xingfa; Zhao, Yuliang (6 November 2020). "Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics". ACS Catalysis. 10 (21): 12657–12665. doi: 10.1021/acscatal.0c03426. S2CID  225336098.
  127. ^ Nandhakumar, Ponnusamy; Kim, Gyeongho; Park, Seonhwa; Kim, Seonghye; Kim, Suhkmann; Park, Jin Kyoon; Lee, Nam-Sihk; Yoon, Young Ho; Yang, Haesik (7 December 2020). "Metal Nanozyme with Ester Hydrolysis Activity in the Presence of Ammonia-Borane and Its Use in a Sensitive Immunosensor". Angewandte Chemie International Edition. 59 (50): 22419–22422. doi: 10.1002/anie.202009737. PMID  32875647. S2CID  221467334.
  128. ^ Zhao, Sheng; Li, Yixuan; Liu, Quanyi; Li, Sirong; Cheng, Yuan; Cheng, Chaoqun; Sun, Ziying; Du, Yan; Butch, Christopher J.; Wei, Hui (November 2020). "An Orally Administered CeO 2 @Montmorillonite Nanozyme Targets Inflammation for Inflammatory Bowel Disease Therapy". Advanced Functional Materials. 30 (45): 2004692. doi: 10.1002/adfm.202004692. S2CID  224911666.
  129. ^ Wu, Jiangjiexing; Yu, Yijun; Cheng, Yuan; Cheng, Chaoqun; Zhang, Yihong; Jiang, Bo; Zhao, Xiaozhi; Miao, Leiying; Wei, Hui (18 January 2021). "Ligand-Dependent Activity Engineering of Glutathione Peroxidase-Mimicking MIL-47(V) Metal–Organic Framework Nanozyme for Therapy". Angewandte Chemie International Edition. 60 (3): 1227–1234. doi: 10.1002/anie.202010714. PMID  33022864. S2CID  222180771.
  130. ^ Wang, Dongdong; Wu, Huihui; Wang, Changlai; Gu, Long; Chen, Hongzhong; Jana, Deblin; Feng, Lili; Liu, Jiawei; Wang, Xueying; Xu, Pengping; Guo, Zhen; Chen, Qianwang; Zhao, Yanli (8 February 2021). "Self-Assembled Single-Site Nanozyme for Tumor-Specific Amplified Cascade Enzymatic Therapy". Angewandte Chemie International Edition. 60 (6): 3001–3007. doi: 10.1002/anie.202008868. hdl: 10356/146292. PMID  33091204. S2CID  225053668.
  131. ^ Singh, Namrata; NaveenKumar, Somanathapura K.; Geethika, Motika; Mugesh, Govindasamy (8 February 2021). "A Cerium Vanadate Nanozyme with Specific Superoxide Dismutase Activity Regulates Mitochondrial Function and ATP Synthesis in Neuronal Cells". Angewandte Chemie International Edition. 60 (6): 3121–3130. doi: 10.1002/anie.202011711. PMID  33079465. S2CID  224812443.
  132. ^ Bhattacharyya, Soumalya; Ali, Sk Rajab; Venkateswarulu, Mangili; Howlader, Prodip; Zangrando, Ennio; De, Mrinmoy; Mukherjee, Partha Sarathi (4 November 2020). "Self-Assembled Pd 12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme". Journal of the American Chemical Society. 142 (44): 18981–18989. doi: 10.1021/jacs.0c09567. PMID  33104330. S2CID  225083774.
  133. ^ Wu, Di; Li, Jingkun; Xu, Shujuan; Xie, Qianqian; Pan, Yanxia; Liu, Xi; Ma, Ronglin; Zheng, Huizhen; Gao, Meng; Wang, Weili; Li, Jia; Cai, Xiaoming; Jaouen, Frédéric; Li, Ruibin (18 November 2020). "Engineering Fe–N Doped Graphene to Mimic Biological Functions of NADPH Oxidase in Cells". Journal of the American Chemical Society. 142 (46): 19602–19610. doi: 10.1021/jacs.0c08360. PMID  33108194. S2CID  225100148.
  134. ^ Li, Yongxin; Sun, Pan; Zhao, Luyang; Yan, Xuehai; Ng, Dennis K. P.; Lo, Pui-Chi (14 December 2020). "Ferric Ion Driven Assembly of Catalase-like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors". Angewandte Chemie. 132 (51): 23428–23438. Bibcode: 2020AngCh.13223428L. doi: 10.1002/ange.202010005. S2CID  241673359.
  135. ^ Wang, Longwei; Gao, Fene; Wang, Aizhu; Chen, Xuanyu; Li, Hao; Zhang, Xiao; Zheng, Hong; Ji, Rui; Li, Bo; Yu, Xin; Liu, Jing; Gu, Zhanjun; Chen, Fulin; Chen, Chunying (December 2020). "Defect-Rich Adhesive Molybdenum Disulfide/rGO Vertical Heterostructures with Enhanced Nanozyme Activity for Smart Bacterial Killing Application". Advanced Materials. 32 (48): 2005423. Bibcode: 2020AdM....3205423W. doi: 10.1002/adma.202005423. PMID  33118265. S2CID  226038440.
  136. ^ Zhang, Lu; Liu, Zhengwei; Deng, Qingqing; Sang, Yanjuan; Dong, Kai; Ren, Jinsong; Qu, Xiaogang (14 December 2020). "Nature-Inspired Construction of MOF@COF Nanozyme with Active Sites in Tailored Microenvironment and Pseudopodia-Like Surface for Enhanced Bacterial Inhibition". Angewandte Chemie International Edition. 60 (7): 3469–3474. doi: 10.1002/anie.202012487. PMID  33118263. S2CID  226080916.
  137. ^ Zhang, Yang; Villarreal, Esteban; Li, Guangfang Grace; Wang, Wei; Wang, Hui (5 November 2020). "Plasmonic Nanozymes: Engineered Gold Nanoparticles Exhibit Tunable Plasmon-Enhanced Peroxidase-Mimicking Activity". The Journal of Physical Chemistry Letters. 11 (21): 9321–9328. doi: 10.1021/acs.jpclett.0c02640. PMID  33089980. S2CID  224823575.
  138. ^ Wang, Zhiyi; Li, Ziyuan; Sun, Zhaoli; Wang, Shuren; Ali, Zeeshan; Zhu, Sihao; Liu, Sha; Ren, Qiushi; Sheng, Fugeng; Wang, Baodui; Hou, Yanglong (1 November 2020). "Visualization nanozyme based on tumor microenvironment "unlocking" for intensive combination therapy of breast cancer". Science Advances. 6 (48): eabc8733. Bibcode: 2020SciA....6.8733W. doi: 10.1126/sciadv.abc8733. PMC  7695480. PMID  33246959.
  139. ^ Wu, Jiangjiexing; Wang, Zhenzhen; Jin, Xin; Zhang, Shuo; Li, Tong; Zhang, Yihong; Xing, Hang; Yu, Yang; Zhang, Huigang; Gao, Xingfa; Wei, Hui (January 2021). "Hammett Relationship in Oxidase-Mimicking Metal–Organic Frameworks Revealed through a Protein-Engineering-Inspired Strategy". Advanced Materials. 33 (3): 2005024. Bibcode: 2021AdM....3305024W. doi: 10.1002/adma.202005024. PMID  33283334. S2CID  227528103.
  140. ^ Scott, Susannah; Zhao, Huimin; Dey, Abhishek; Gunnoe, T. Brent (4 December 2020). "Nano-Apples and Orange-Zymes". ACS Catalysis. 10 (23): 14315–14317. doi: 10.1021/acscatal.0c05047.
  141. ^ Xi, Juqun; Zhang, Ruofei; Wang, Liming; Xu, Wei; Liang, Qian; Li, Jingyun; Jiang, Jian; Yang, Yili; Yan, Xiyun; Fan, Kelong; Gao, Lizeng (6 December 2020). "A Nanozyme-Based Artificial Peroxisome Ameliorates Hyperuricemia and Ischemic Stroke". Advanced Functional Materials. 31 (9): 2007130. doi: 10.1002/adfm.202007130. ISSN  1616-301X. S2CID  230609877.
  142. ^ Durrani2020-09-28T13:45:00+01:00, Jamie. "Artificial enzymes: catalysis by design". Chemistry World.{{ cite web}}: CS1 maint: numeric names: authors list ( link)
  143. ^ Jiao, Lei; Xu, Weiqing; Wu, Yu; Yan, Hongye; Gu, Wenling; Du, Dan; Lin, Yuehe; Zhu, Chengzhou (1 February 2021). "Single-atom catalysts boost signal amplification for biosensing". Chemical Society Reviews. 50 (2): 750–765. doi: 10.1039/D0CS00367K. PMID  33306069. S2CID  228100965.
  144. ^ Kumari, Nitee; Kumar, Sumit; Karmacharya, Mamata; Dubbu, Sateesh; Kwon, Taewan; Singh, Varsha; Chae, Keun Hwa; Kumar, Amit; Cho, Yoon-Kyoung; Lee, In Su (13 January 2021). "Surface-Textured Mixed-Metal-Oxide Nanocrystals as Efficient Catalysts for ROS Production and Biofilm Eradication". Nano Letters. 21 (1): 279–287. Bibcode: 2021NanoL..21..279K. doi: 10.1021/acs.nanolett.0c03639. PMID  33306397. S2CID  228170364.
  145. ^ Komkova, Maria A.; Ibragimova, Olga A.; Karyakina, Elena E.; Karyakin, Arkady A. (14 January 2021). "Catalytic Pathway of Nanozyme 'Artificial Peroxidase' with 100-Fold Greater Bimolecular Rate Constants Compared to Those of the Enzyme". The Journal of Physical Chemistry Letters. 12 (1): 171–176. doi: 10.1021/acs.jpclett.0c03014. PMID  33321035. S2CID  229285144.
  146. ^ Ma, Mengmeng; Liu, Zhenqi; Gao, Nan; Pi, Zifeng; Du, Xiubo; Ren, Jinsong; Qu, Xiaogang (30 December 2020). "Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-β in an Alzheimer's Disease Model". Journal of the American Chemical Society. 142 (52): 21702–21711. doi: 10.1021/jacs.0c08395. PMID  33326236. S2CID  229302798.
  147. ^ Liu, Hanghang; Han, Yaobao; Wang, Tingting; Zhang, Hao; Xu, Qi; Yuan, Jiaxin; Li, Zhen (30 December 2020). "Targeting Microglia for Therapy of Parkinson's Disease by Using Biomimetic Ultrasmall Nanoparticles". Journal of the American Chemical Society. 142 (52): 21730–21742. doi: 10.1021/jacs.0c09390. PMID  33315369. S2CID  229178158.
  148. ^ Liu, Haile; Li, Yonghui; Sun, Si; Xin, Qi; Liu, Shuhu; Mu, Xiaoyu; Yuan, Xun; Chen, Ke; Wang, Hao; Varga, Kalman; Mi, Wenbo; Yang, Jiang; Zhang, Xiao-Dong (7 January 2021). "Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions". Nature Communications. 12 (1): 114. arXiv: 2012.09527. Bibcode: 2021NatCo..12..114L. doi: 10.1038/s41467-020-20275-0. PMC  7791071. PMID  33414464.
  149. ^ Liu, Yu; Chen, Lei; Chen, Yong; Zhang, Yi (5 January 2021). "Photo-Controllable Catalysis and Chiral Monosaccharide Recognition Induced by Cyclodextrin Derivatives". Angewandte Chemie International Edition. 60 (14): 7654–7658. doi: 10.1002/anie.202017001. ISSN  1433-7851. PMID  33400383. S2CID  230668470.
  150. ^ Feng, Xuanyu; Song, Yang; Chen, Justin S.; Xu, Ziwan; Dunn, Soren J.; Lin, Wenbin (20 January 2021). "Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework". Journal of the American Chemical Society. 143 (2): 1107–1118. doi: 10.1021/jacs.0c11920. ISSN  0002-7863. PMID  33411525. S2CID  231192930.
  151. ^ 武江洁星, 魏辉; Jiangjiexing Wu, Hui Wei (24 January 2021). "浅谈纳米酶的高效设计策略" [Efficient Design Strategies for Nanozymes]. 化学进展 (in Chinese). 33 (1): 42. doi: 10.7536/PC201117.
  152. ^ Xi, Zheng; Wei, Kecheng; Wang, Qingxiao; Kim, Moon J.; Sun, Shouheng; Fung, Victor; Xia, Xiaohu (24 February 2021). "Nickel–Platinum Nanoparticles as Peroxidase Mimics with a Record High Catalytic Efficiency". Journal of the American Chemical Society. 143 (7): 2660–2664. doi: 10.1021/jacs.0c12605. OSTI  1766375. PMID  33502185. S2CID  231766217.
  153. ^ Gong, Lige; Ding, Wenqiao; Chen, Ying; Yu, Kai; Guo, Changhong; Zhou, Baibin (6 April 2021). "Inhibition of Mitochondrial ATP Synthesis and Regulation of Oxidative Stress Based on {SbW 8 O 30 } Determined by Single-Cell Proteomics Analysis". Angewandte Chemie. 133 (15): 8425–8432. doi: 10.1002/ange.202100297. S2CID  242400655.
  154. ^ Kim, Minju; Dygas, Miroslaw; Sobolev, Yaroslav I.; Beker, Wiktor; Zhuang, Qiang; Klucznik, Tomasz; Ahumada, Guillermo; Ahumada, Juan Carlos; Grzybowski, Bartosz A. (3 February 2021). "On-Nanoparticle Gating Units Render an Ordinary Catalyst Substrate- and Site-Selective". Journal of the American Chemical Society. 143 (4): 1807–1815. doi: 10.1021/jacs.0c09408. PMID  33471520. S2CID  231666073.
  155. ^ Zhu, Yang; Wang, Wenyu; Cheng, Junjie; Qu, Yunteng; Dai, Yi; Liu, Manman; Yu, Jianing; Wang, Chengming; Wang, Huijuan; Wang, Sicong; Zhao, Chao; Wu, Yuen; Liu, Yangzhong (19 April 2021). "Stimuli-Responsive Manganese Single-Atom Nanozyme for Tumor Therapy via Integrated Cascade Reactions". Angewandte Chemie International Edition. 60 (17): 9480–9488. doi: 10.1002/anie.202017152. PMID  33543825. S2CID  231817944.
  156. ^ Zhang, Lufeng; Zhang, Liang; Deng, Hui; Li, Huan; Tang, Wentao; Guan, Luyao; Qiu, Ye; Donovan, Michael J.; Chen, Zhuo; Tan, Weihong (31 March 2021). "In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori". Nature Communications. 12 (1): 2002. doi: 10.1038/s41467-021-22286-x. PMC  8012368. PMID  33790299.
  157. ^ Ji, Shufang; Jiang, Bing; Hao, Haigang; Chen, Yuanjun; Dong, Juncai; Mao, Yu; Zhang, Zedong; Gao, Rui; Chen, Wenxing; Zhang, Ruofei; Liang, Qian; Li, Haijing; Liu, Shuhu; Wang, Yu; Zhang, Qinghua; Gu, Lin; Duan, Demin; Liang, Minmin; Wang, Dingsheng; Yan, Xiyun; Li, Yadong (May 2021). "Matching the kinetics of natural enzymes with a single-atom iron nanozyme". Nature Catalysis. 4 (5): 407–417. doi: 10.1038/s41929-021-00609-x. S2CID  233876554.
  158. ^ Chen, Yao; Shen, Xiaomei; Carmona, Unai; Yang, Fan; Gao, Xingfa; Knez, Mato; Zhang, Lianbing; Qin, Yong (June 2021). "Control of Stepwise Hg 2+ Reduction on Gold to Selectively Tune its Peroxidase and Catalase-Like Activities and the Mechanism". Advanced Materials Interfaces. 8 (11): 2100086. doi: 10.1002/admi.202100086. S2CID  236606846.
  159. ^ Zhou, Xuantong; You, Min; Wang, Fuhui; Wang, Zhenzhen; Gao, Xingfa; Jing, Chao; Liu, Jiaming; Guo, Mengyu; Li, Jiayang; Luo, Aiping; Liu, Huibiao; Liu, Zhihua; Chen, Chunying (June 2021). "Multifunctional Graphdiyne–Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer". Advanced Materials. 33 (24): 2100556. Bibcode: 2021AdM....3300556Z. doi: 10.1002/adma.202100556. PMID  33949734. S2CID  233742755.
  160. ^ Yu, Bin; Wang, Wei; Sun, Wenbo; Jiang, Chunhuan; Lu, Lehui (16 June 2021). "Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy". Journal of the American Chemical Society. 143 (23): 8855–8865. doi: 10.1021/jacs.1c03510. PMID  34086444. S2CID  235348273.
  161. ^ Nanozymes for Environmental Engineering. Environmental Chemistry for a Sustainable World. Vol. 63. 2021. doi: 10.1007/978-3-030-68230-9. ISBN  978-3-030-68229-3. S2CID  235326551.
  162. ^ Du, Fangxue; Liu, Luchang; Wu, Zihe; Zhao, Zhenyang; Geng, Wei; Zhu, Bihui; Ma, Tian; Xiang, Xi; Ma, Lang; Cheng, Chong; Qiu, Li (July 2021). "Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies". Advanced Materials. 33 (29): 2101095. Bibcode: 2021AdM....3301095D. doi: 10.1002/adma.202101095. PMID  34096109. S2CID  235361149.
  163. ^ Yang, Bowen; Yao, Heliang; Tian, Han; Yu, Zhiguo; Guo, Yuedong; Wang, Yuemei; Yang, Jiacai; Chen, Chang; Shi, Jianlin (7 June 2021). "Intratumoral synthesis of nano-metalchelate for tumor catalytic therapy by ligand field-enhanced coordination". Nature Communications. 12 (1): 3393. Bibcode: 2021NatCo..12.3393Y. doi: 10.1038/s41467-021-23710-y. PMC  8184762. PMID  34099712.
  164. ^ Chen, Jinxing; Ma, Qian; Li, Minghua; Chao, Daiyong; Huang, Liang; Wu, Weiwei; Fang, Youxing; Dong, Shaojun (7 June 2021). "Glucose-oxidase like catalytic mechanism of noble metal nanozymes". Nature Communications. 12 (1): 3375. Bibcode: 2021NatCo..12.3375C. doi: 10.1038/s41467-021-23737-1. PMC  8184917. PMID  34099730.
  165. ^ Zhang, Ruofei; Yan, Xiyun; Fan, Kelong (23 July 2021). "Nanozymes Inspired by Natural Enzymes". Accounts of Materials Research. 2 (7): 534–547. doi: 10.1021/accountsmr.1c00074.
  166. ^ Pecina, Adam; Rosa-Gastaldo, Daniele; Riccardi, Laura; Franco-Ulloa, Sebastian; Milan, Emil; Scrimin, Paolo; Mancin, Fabrizio; De Vivo, Marco (16 July 2021). "On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes". ACS Catalysis. 11 (14): 8736–8748. doi: 10.1021/acscatal.1c01215. PMC  8397296. PMID  34476110.
  167. ^ Wei, Hui; Gao, Lizeng; Fan, Kelong; Liu, Juewen; He, Jiuyang; Qu, Xiaogang; Dong, Shaojun; Wang, Erkang; Yan, Xiyun (1 October 2021). "Nanozymes: A clear definition with fuzzy edges". Nano Today. 40: 101269. doi: 10.1016/j.nantod.2021.101269.
  168. ^ Ouyang, Yu; Biniuri, Yonatan; Fadeev, Michael; Zhang, Pu; Carmieli, Raanan; Vázquez-González, Margarita; Willner, Itamar (4 August 2021). "Aptamer-Modified Cu 2+ -Functionalized C-Dots: Versatile Means to Improve Nanozyme Activities-'Aptananozymes'". Journal of the American Chemical Society. 143 (30): 11510–11519. doi: 10.1021/jacs.1c03939. PMC  8856595. PMID  34286967. S2CID  236159523.
  169. ^ Yuan, Anran; Xia, Fan; Bian, Qiong; Wu, Haibin; Gu, Yueting; Wang, Tao; Wang, Ruxuan; Huang, Lingling; Huang, Qiaoling; Rao, Yuefeng; Ling, Daishun; Li, Fangyuan; Gao, Jianqing (24 August 2021). "Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment". ACS Nano. 15 (8): 13759–13769. doi: 10.1021/acsnano.1c05272. ISSN  1936-0851. PMID  34279913. S2CID  236142266.
  170. ^ Yang, Jingjing; Pan, Bei; Zeng, Fei; He, Bangshun; Gao, Yanfeng; Liu, Xinli; Song, Yujun (10 March 2021). "Magnetic Colloid Antibodies Accelerate Small Extracellular Vesicles Isolation for Point-of-Care Diagnostics". Nano Letters. 21 (5): 2001–2009. Bibcode: 2021NanoL..21.2001Y. doi: 10.1021/acs.nanolett.0c04476. PMID  33591201. S2CID  231935616.
  171. ^ Gunasekaran, Sundaram (2021). Nanozymes: Advances and Applications. CRC Press. ISBN  978-1-000-47436-7.[ page needed]
  172. ^ Zandieh, Mohamad; Liu, Juewen (26 October 2021). "Nanozyme Catalytic Turnover and Self-Limited Reactions". ACS Nano. 15 (10): 15645–15655. doi: 10.1021/acsnano.1c07520. PMID  34623130. S2CID  238476223.
  173. ^ Teng, Lili; Han, Xiaoyu; Liu, Yongchao; Lu, Chang; Yin, Baoli; Huan, Shuangyan; Yin, Xia; Zhang, Xiao-Bing; Song, Guosheng (6 December 2021). "Smart Nanozyme Platform with Activity-Correlated Ratiometric Molecular Imaging for Predicting Therapeutic Effects". Angewandte Chemie International Edition. 60 (50): 26142–26150. doi: 10.1002/anie.202110427. PMID  34554633. S2CID  237607859.
  174. ^ Cao, Changyu; Zou, Hai; Yang, Nan; Li, Hui; Cai, Yu; Song, Xuejiao; Shao, Jinjun; Chen, Peng; Mou, Xiaozhou; Wang, Wenjun; Dong, Xiaochen (19 October 2021). "Fe 3 O 4 /Ag/Bi 2 MoO 6 Photoactivatable Nanozyme for Self-Replenishing and Sustainable Cascaded Nanocatalytic Cancer Therapy". Advanced Materials. 33 (52): 2106996. Bibcode: 2021AdM....3306996C. doi: 10.1002/adma.202106996. PMID  34626026. S2CID  238529101.
  175. ^ Chen, Jinxing; Zheng, Xiliang; Zhang, Jiaxin; Ma, Qian; Zhao, Zhiwei; Huang, Liang; Wu, Weiwei; Wang, Ying; Wang, Jin; Dong, Shaojun (11 October 2021). "Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic". National Science Review. 9 (3): nwab186. doi: 10.1093/nsr/nwab186. PMC  8897313. PMID  35261777.
  176. ^ Liu, Yuan; Huang, Yue; Kim, Dongyeop; Ren, Zhi; Oh, Min Jun; Cormode, David P.; Hara, Anderson T.; Zero, Domenick T.; Koo, Hyun (24 November 2021). "Ferumoxytol Nanoparticles Target Biofilms Causing Tooth Decay in the Human Mouth". Nano Letters. 21 (22): 9442–9449. Bibcode: 2021NanoL..21.9442L. doi: 10.1021/acs.nanolett.1c02702. PMC  9308480. PMID  34694125. S2CID  239767560.
  177. ^ Chen, Yuanjun; Wang, Peixia; Hao, Haigang; Hong, Juanji; Li, Haijing; Ji, Shufang; Li, Ang; Gao, Rui; Dong, Juncai; Han, Xiaodong; Liang, Minmin; Wang, Dingsheng; Li, Yadong (10 November 2021). "Thermal Atomization of Platinum Nanoparticles into Single Atoms: An Effective Strategy for Engineering High-Performance Nanozymes". Journal of the American Chemical Society. 143 (44): 18643–18651. doi: 10.1021/jacs.1c08581. PMID  34726407. S2CID  240421572.
  178. ^ Wang, Zhenzhen; Wu, Jiangjiexing; Zheng, Jia-Jia; Shen, Xiaomei; Yan, Liang; Wei, Hui; Gao, Xingfa; Zhao, Yuliang (25 November 2021). "Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening". Nature Communications. 12 (1): 6866. Bibcode: 2021NatCo..12.6866W. doi: 10.1038/s41467-021-27194-8. PMC  8616946. PMID  34824234. S2CID  244660088.
  179. ^ Li, Sirong; Zhang, Yihong; Wang, Quan; Lin, Anqi; Wei, Hui (2022). "Nanozyme-Enabled Analytical Chemistry". Analytical Chemistry. 94 (1): 312–323. doi: 10.1021/acs.analchem.1c04492. PMID  34870985. S2CID  244932009.
  180. ^ Lin, Anqi; Sun, Ziying; Xu, Xingquan; Zhao, Sheng; Li, Jiawei; Sun, Heng; Wang, Quan; Jiang, Qing; Wei, Hui; Shi, Dongquan (2022). "Self-Cascade Uricase/Catalase Mimics Alleviate Acute Gout". Nano Letters. 22 (1): 508–516. Bibcode: 2022NanoL..22..508L. doi: 10.1021/acs.nanolett.1c04454. PMID  34968071. S2CID  245593934.
  181. ^ Li, Sirong; Zhou, Zijun; Tie, Zuoxiu; Wang, Bing; Ye, Meng; Du, Lei; Cui, Ran; Liu, Wei; Wan, Cuihong; Liu, Quanyi; Zhao, Sheng; Wang, Quan; Zhang, Yihong; Zhang, Shuo; Zhang, Huigang; Du, Yan; Wei, Hui (9 December 2020). "Data-informed discovery of hydrolytic nanozymes". Nature Communications. 13 (1): 2020.12.08.416305. Bibcode: 2022NatCo..13..827L. doi: 10.1038/s41467-022-28344-2. PMC  8837776. PMID  35149676.
  182. ^ Li, Sirong; Zhou, Zijun; Tie, Zuoxiu; Wang, Bing; Ye, Meng; Du, Lei; Cui, Ran; Liu, Wei; Wan, Cuihong; Liu, Quanyi; Zhao, Sheng; Wang, Quan; Zhang, Yihong; Zhang, Shuo; Zhang, Huigang; Du, Yan; Wei, Hui (11 February 2022). "Data-informed discovery of hydrolytic nanozymes". Nature Communications. 13 (1): 827. Bibcode: 2022NatCo..13..827L. doi: 10.1038/s41467-022-28344-2. PMC  8837776. PMID  35149676.
  183. ^ Ma, Xinxin; Hao, Junnian; Wu, Jianrong; Li, Yuehua; Cai, Xiaojun; Zheng, Yuanyi (March 2022). "Prussian Blue Nanozyme as a Pyroptosis Inhibitor Alleviates Neurodegeneration". Advanced Materials. 34 (15): 2106723. Bibcode: 2022AdM....3406723M. doi: 10.1002/adma.202106723. PMID  35143076. S2CID  246701158.
  184. ^ Ma, Chong-Bo; Xu, Yaping; Wu, Lixin; Wang, Quan; Zheng, Jia-Jia; Ren, Guoxi; Wang, Xiaoyu; Gao, Xingfa; Zhou, Ming; Wang, Ming; Wei, Hui (3 March 2022). "Guided Synthesis of a Mo/Zn Dual Single-Atom Nanozyme with Synergistic Effect and Peroxidase-like Activity". Angewandte Chemie. 134 (25): e202116170. doi: 10.1002/ange.202116170. PMID  35238141. S2CID  247274050.
  185. ^ Wang, Quan; Cheng, Chaoqun; Zhao, Sheng; Liu, Quanyi; Zhang, Yihong; Liu, Wanling; Zhao, Xiaozhi; Zhang, He; Pu, Jun; Zhang, Shuo; Zhang, Huigang; Du, Yan; Wei, Hui (2022). "A Valence-Engineered Self-Cascading Antioxidant Nanozyme for the Therapy of Inflammatory Bowel Disease". Angewandte Chemie International Edition. 61 (27): anie.202201101. doi: 10.1002/anie.202201101. PMID  35452169. S2CID  248323783.
  186. ^ Ji, Weihong; Li, Yan; Peng, Huan; Zhao, Ruichen; Shen, Jie; Wu, Yanyue; Wang, Jianze; Hao, Qiulian; Lu, Zhiguo; Yang, Jun; Zhang, Xin (2022). "Self-Catalytic Small Interfering RNA Nanocarriers for Synergistic Treatment of Neurodegenerative Diseases". Advanced Materials. 34 (1): e2105711. Bibcode: 2022AdM....3405711J. doi: 10.1002/adma.202105711. PMID  34601753. S2CID  238257684.
  187. ^ Lin, Anqi; Liu, Quanyi; Zhang, Yihong; Wang, Quan; Li, Sirong; Zhu, Bijun; Miao, Leiying; Du, Yan; Zhao, Sheng; Wei, Hui (2022). "A Dopamine-Enabled Universal Assay for Catalase and Catalase-Like Nanozymes". Analytical Chemistry. 94 (30): 10636–10642. doi: 10.1021/acs.analchem.2c00804. PMID  35758679. S2CID  250071990.
  188. ^ Broto, Marta; Kaminski, Michael M.; Adrianus, Christopher; Kim, Nayoung; Greensmith, Robert; Dissanayake-Perera, Schan; Schubert, Alexander J.; Tan, Xiao; Kim, Hyemin; Dighe, Anand S.; Collins, James J.; Stevens, Molly M. (2022). "Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs". Nature Nanotechnology. 17 (10): 1120–1126. Bibcode: 2022NatNa..17.1120B. doi: 10.1038/s41565-022-01179-0. hdl: 10044/1/97651. PMID  35927321. S2CID  251323478.
  189. ^ Zhou, Zhan; Wang, Yanlong; Peng, Feng; Meng, Fanqi; Zha, Jiajia; Ma, Lu; Du, Yonghua; Peng, Na; Ma, Lufang; Zhang, Qinghua; Gu, Lin; Yin, Wenyan; Gu, Zhanjun; Tan, Chaoliang (2022). "Intercalation-Activated Layered MoO 3 Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy". Angewandte Chemie. 134 (16). doi: 10.1002/ange.202115939. OSTI  1844569. S2CID  246318463.
  190. ^ Zhang, Shaofang; Li, Yonghui; Sun, Si; Liu, Ling; Mu, Xiaoyu; Liu, Shuhu; Jiao, Menglu; Chen, Xinzhu; Chen, Ke; Ma, Huizhen; Li, Tuo; Liu, Xiaoyu; Wang, Hao; Zhang, Jianning; Yang, Jiang; Zhang, Xiao-Dong (2022). "Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma". Nature Communications. 13 (1): 4744. Bibcode: 2022NatCo..13.4744Z. doi: 10.1038/s41467-022-32411-z. PMC  9374753. PMID  35961961. S2CID  251539856.
  191. ^ Zhang, Ruofei; Xue, Bai; Tao, Yanhong; Zhao, Hanqing; Zhang, Zixia; Wang, Xiaonan; Zhou, Xinyao; Jiang, Bing; Yang, Zhenglin; Yan, Xiyun; Fan, Kelong (11 August 2022). "Edge-site Engineering of Defective Fe-N 4 nanozymes with Boosted Catalase-like Performance for Retinal Vasculopathies". Advanced Materials. 34 (39): e2205324. Bibcode: 2022AdM....3405324Z. doi: 10.1002/adma.202205324. PMID  35953446. S2CID  251516329.
  192. ^ Cai, Shuangfei; Liu, Jiaming; Ding, Jianwei; Fu, Zhao; Li, Haolin; Xiong, Youlin; Lian, Zheng; Yang, Rong; Chen, Chunying (16 August 2022). "Tumor-Microenvironment-Responsive Cascade Reactions by a Cobalt-Single-Atom Nanozyme for Synergistic Nanocatalytic Chemotherapy". Angewandte Chemie International Edition. 61 (48): anie.202204502. doi: 10.1002/anie.202204502. PMID  35972794. S2CID  251592137.
  193. ^ Dong, Haijiao; Du, Wei; Dong, Jian; Che, Renchao; Kong, Fei; Cheng, Wenlong; Ma, Ming; Gu, Ning; Zhang, Yu (12 September 2022). "Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions". Nature Communications. 13 (1): 5365. Bibcode: 2022NatCo..13.5365D. doi: 10.1038/s41467-022-33098-y. PMC  9467987. PMID  36097172.
  194. ^ Gao, Rui; Xu, Liguang; Sun, Maozhong; Xu, Manlin; Hao, Changlong; Guo, Xiao; Colombari, Felippe Mariano; Zheng, Xin; Král, Petr; De Moura, André F.; Xu, Chuanlai; Yang, Jinguang; Kotov, Nicholas A.; Kuang, Hua (August 2022). "Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles". Nature Catalysis. 5 (8): 694–707. doi: 10.1038/s41929-022-00823-1. S2CID  251672747.
  195. ^ Meyers, Fabienne (October 17, 2022). "IUPAC Announces the 2022 Top Ten Emerging Technologies in Chemistry". IUPAC | International Union of Pure and Applied Chemistry.
  196. ^ Nanozymes: Design, Synthesis, and Applications. ACS Symposium Series. Vol. 1422. 2022. doi: 10.1021/bk-2022-1422. ISBN  978-0-8412-9751-7. S2CID  253034535.
  197. ^ Zandieh, Mohamad; Liu, Juewen (21 November 2022). "Removal and Degradation of Microplastics Using the Magnetic and Nanozyme Activities of Bare Iron Oxide Nanoaggregates". Angewandte Chemie International Edition. 61 (47): e202212013. doi: 10.1002/anie.202212013. PMID  36195554. S2CID  252714734.
  198. ^ Chen, Yao; Tian, Qing; Wang, Haoyu; Ma, Ruonan; Han, Ruiting; Wang, Yu; Ge, Huibin; Ren, Yujing; Yang, Rong; Yang, Huimin; Chen, Yinjuan; Duan, Xuezhi; Zhang, Lianbing; Gao, Jie; Gao, Lizeng; Yan, Xiyun; Qin, Yong (14 November 2022). "A Manganese-Based Metal–Organic Framework as a Cold-Adapted Nanozyme". Advanced Materials. 36 (10): e2206421. doi: 10.1002/adma.202206421. PMID  36329676. S2CID  253301961.
  199. ^ Chao, Daiyong; Dong, Qing; Yu, Zhixuan; Qi, Desheng; Li, Minghua; Xu, Lili; Liu, Ling; Fang, Youxing; Dong, Shaojun (2022). "Specific Nanodrug for Diabetic Chronic Wounds Based on Antioxidase-Mimicking MOF-818 Nanozymes". Journal of the American Chemical Society. 144 (51): 23438–23447. doi: 10.1021/jacs.2c09663. PMID  36512736. S2CID  254661703.
  200. ^ Zhou, Jie; Xu, Deting; Tian, Gan; He, Qian; Zhang, Xiao; Liao, Jing; Mei, Linqiang; Chen, Lei; Gao, Lizeng; Zhao, Lina; Yang, Guoping; Yin, Wenyan; Nie, Guangjun; Zhao, Yuliang (2023). "Coordination-Driven Self-Assembly Strategy-Activated Cu Single-Atom Nanozymes for Catalytic Tumor-Specific Therapy". Journal of the American Chemical Society. 145 (7): 4279–4293. doi: 10.1021/jacs.2c13597. PMID  36744911. S2CID  256614276.
  201. ^ Wei, Yonghua; Wu, Jin; Wu, Yixuan; Liu, Hongjiang; Meng, Fanqiang; Liu, Qiqi; Midgley, Adam C.; Zhang, Xiangyun; Qi, Tianyi; Kang, Helong; Chen, Rui; Kong, Deling; Zhuang, Jie; Yan, Xiyun; Huang, Xinglu (2022). "Prediction and Design of Nanozymes using Explainable Machine Learning". Advanced Materials. 34 (27): e2201736. Bibcode: 2022AdM....3401736W. doi: 10.1002/adma.202201736. PMID  35487518. S2CID  248451764.
  202. ^ Liu, Zhiqing; Li, Wei; Sheng, Wenbo; Liu, Shiyu; Li, Rui; Li, Qian; Li, Danya; Yu, Shui; Li, Meng; Li, Yongsheng; Jia, Xin (2023). "Tunable Hierarchically Structured Meso-Macroporous Carbon Spheres from a Solvent-Mediated Polymerization-Induced Self-Assembly". Journal of the American Chemical Society. 145 (9): 5310–5319. doi: 10.1021/jacs.2c12977. PMID  36758639. S2CID  256739119.
  203. ^ Zuo, Li; Ren, Kehao; Guo, Xianming; Pokhrel, Pravin; Pokhrel, Bishal; Hossain, Mohammad Akter; Chen, Zhao-Xu; Mao, Hanbin; Shen, Hao (2023). "Amalgamation of DNAzymes and Nanozymes in a Coronazyme". Journal of the American Chemical Society. 145 (10): 5750–5758. doi: 10.1021/jacs.2c12367. PMC  10325850. PMID  36795472. S2CID  256899407.
  204. ^ Xu, Weiqing; Zhong, Hong; Wu, Yu; Qin, Ying; Jiao, Lei; Sha, Meng; Su, Rina; Tang, Yinjun; Zheng, Lirong; Hu, Liuyong; Zhang, Shipeng; Beckman, Scott P.; Gu, Wenling; Yang, Yong; Guo, Shaojun; Zhu, Chengzhou (2023). "Photoexcited Ru single-atomic sites for efficient biomimetic redox catalysis". Proceedings of the National Academy of Sciences. 120 (21): e2220315120. Bibcode: 2023PNAS..12020315X. doi: 10.1073/pnas.2220315120. PMC  10214184. PMID  37186847.
  205. ^ Wei, Gen; Liu, Quanyi; Wang, Xiaoyu; Zhou, Zijun; Zhao, Xiaozhi; Zhou, Wanqing; Liu, Wanling; Zhang, Yihong; Liu, Shujie; Zhu, Chenxin; Wei, Hui (2023). "A probiotic nanozyme hydrogel regulates vaginal microenvironment for Candida vaginitis therapy". Science Advances. 9 (20): eadg0949. Bibcode: 2023SciA....9G.949W. doi: 10.1126/sciadv.adg0949. PMC  10191424. PMID  37196095. S2CID  258763150.
  206. ^ Wang, Yuting; Li, Tong; Wei, Hui (2023). "Determination of the Maximum Velocity of a Peroxidase-like Nanozyme". Analytical Chemistry. 95 (26): 10105–10109. doi: 10.1021/acs.analchem.3c01830. PMID  37341651. S2CID  259209589.
  207. ^ Liu, Wanling; Zhang, Yihong; Wei, Gen; Zhang, Minxuan; Li, Tong; Liu, Quanyi; Zhou, Zijun; Du, Yan; Wei, Hui (2023). "Integrated Cascade Nanozymes with Antisenescence Activities for Atherosclerosis Therapy". Angewandte Chemie International Edition. 62 (33): e202304465. doi: 10.1002/anie.202304465. PMID  37338457. S2CID  259199886.
  208. ^ Wei, Hui; Li, Genxi; Li, Jinghong (2023). Biomedical Nanozymes: From Diagnostics to Therapeutics. Springer Nature. ISBN  978-981-99-3338-9.[ page needed]
  209. ^ "High-Performance Nanozyme Designer - 2023 Dalton Horizon Prize winner".
  210. ^ Liu, Quanyi; Zhao, Sheng; Zhang, Yihong; Fang, Qi; Liu, Wanling; Wu, Rong; Wei, Gen; Wei, Hui; Du, Yan (2023). "Nanozyme-Cosmetic Contact Lenses for Ocular Surface Diseases Prevention". Advanced Materials. 35 (44): e2305555. doi: 10.1002/adma.202305555. PMID  37584617. S2CID  260925225.
  211. ^ Ma, Long; Zheng, Jia-Jia; Zhou, Ning; Zhang, Ruofei; Fang, Long; Yang, Yili; Gao, Xingfa; Chen, Chunying; Yan, Xiyun; Fan, Kelong (2024). "A natural biogenic nanozyme for scavenging superoxide radicals". Nature Communications. 15 (1): 233. Bibcode: 2024NatCo..15..233M. doi: 10.1038/s41467-023-44463-w. PMC  10764798. PMID  38172125.
  212. ^ Zheng, Jia-Jia; Wang, Xiaoyu; Li, Zeqi; Shen, Xiaomei; Wei, Gen; Xia, Pufeihong; Zhou, Yi-Ge; Wei, Hui; Gao, Xingfa (2024). "Integrated Computational and Experimental Framework for Inverse Screening of Candidate Antibacterial Nanomedicine". ACS Nano. 18 (2): 1531–1542. doi: 10.1021/acsnano.3c09128. PMID  38164912. S2CID  266724881.
  213. ^ Li, Beibei; Ma, Ruonan; Chen, Lei; Zhou, Caiyu; Zhang, Yu-Xiao; Wang, Xiaonan; Huang, Helai; Hu, Qikun; Zheng, Xiaobo; Yang, Jiarui; Shao, Mengjuan; Hao, Pengfei; Wu, Yanfen; Che, Yizhen; Li, Chang; Qin, Tao; Gao, Lizeng; Niu, Zhiqiang; Li, Yadong (2023). "Diatomic iron nanozyme with lipoxidase-like activity for efficient inactivation of enveloped virus". Nature Communications. 14 (1): 7312. Bibcode: 2023NatCo..14.7312L. doi: 10.1038/s41467-023-43176-4. PMC  10640610. PMID  37951992.
  214. ^ Gao, Wenhui; He, Jiuyang; Chen, Lei; Meng, Xiangqin; Ma, Yana; Cheng, Liangliang; Tu, Kangsheng; Gao, Xingfa; Liu, Cui; Zhang, Mingzhen; Fan, Kelong; Pang, Dai-Wen; Yan, Xiyun (2023). "Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme". Nature Communications. 14 (1): 160. Bibcode: 2023NatCo..14..160G. doi: 10.1038/s41467-023-35828-2. PMC  9834297. PMID  36631476.
  215. ^ Koo, Sagang; Sohn, Hee Su; Kim, Tae Hee; Yang, Siyeon; Jang, Se Youn; Ye, Seongryeol; Choi, Boomin; Kim, Soo Hyeon; Park, Kyoung Sun; Shin, Hyun Mu; Park, Ok Kyu; Kim, Cheesue; Kang, Mikyung; Soh, Min; Yoo, Jin; Kim, Dokyoon; Lee, Nohyun; Kim, Byung-Soo; Jung, Youngmee; Hyeon, Taeghwan (2023). "Ceria-vesicle nanohybrid therapeutic for modulation of innate and adaptive immunity in a collagen-induced arthritis model". Nature Nanotechnology. 18 (12): 1502–1514. Bibcode: 2023NatNa..18.1502K. doi: 10.1038/s41565-023-01523-y. PMID  37884660. S2CID  264517619.
  216. ^ Jiang, Wei; Li, Qing; Zhang, Ruofei; Li, Jianru; Lin, Qianyu; Li, Jingyun; Zhou, Xinyao; Yan, Xiyun; Fan, Kelong (2023). "Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson's disease". Nature Communications. 14 (1): 8137. Bibcode: 2023NatCo..14.8137J. doi: 10.1038/s41467-023-43870-3. PMC  10709450. PMID  38065945.
  217. ^ Li, Guangming; Liu, Hao; Hu, Tianding; Pu, Fang; Ren, Jinsong; Qu, Xiaogang (2023). "Dimensionality Engineering of Single-Atom Nanozyme for Efficient Peroxidase-Mimicking". Journal of the American Chemical Society. 145 (30): 16835–16842. doi: 10.1021/jacs.3c05162. PMID  37487021. S2CID  260133028.