From Wikipedia, the free encyclopedia
Tryptamine
Names
Preferred IUPAC name
2-(1H-Indol-3-yl)ethan-1-amine
Identifiers
3D model ( JSmol)
125513
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.464 Edit this at Wikidata
KEGG
PubChem CID
UNII
  • InChI=1S/C10H12N2/c11-6-5-8-7-12-10-4-2-1-3-9(8)10/h1-4,7,12H,5-6,11H2 checkY
    Key: APJYDQYYACXCRM-UHFFFAOYSA-N ☒N
  • InChI=1/C10H12N2/c11-6-5-8-7-12-10-4-2-1-3-9(8)10/h1-4,7,12H,5-6,11H2
    Key: APJYDQYYACXCRM-UHFFFAOYAU
  • c1ccc2c(c1)c(c[nH]2)CCN
Properties [1]
C10H12N2
Molar mass 160.220 g·mol−1
Appearance white to orange needles
Melting point 118˚C
Boiling point 137 °C (279 °F; 410 K) (0.15 mmHg)
negligible solubility in water
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tryptamine is an indolamine metabolite of the essential amino acid, tryptophan. [2] [3] The chemical structure is defined by an indole—a fused benzene and pyrrole ring, and a 2-aminoethyl group at the second carbon (third aromatic atom, with the first one being the heterocyclic nitrogen). [2] The structure of tryptamine is a shared feature of certain aminergic neuromodulators including melatonin, serotonin, bufotenin and psychedelic derivatives such as dimethyltryptamine (DMT), psilocybin, psilocin and others. [4] [5] [6] Tryptamine has been shown to activate trace amine-associated receptors expressed in the mammalian brain, and regulates the activity of dopaminergic, serotonergic and glutamatergic systems. [7] [8] In the human gut, symbiotic bacteria convert dietary tryptophan to tryptamine, which activates 5-HT4 receptors and regulates gastrointestinal motility. [3] [9] [10] Multiple tryptamine-derived drugs have been developed to treat migraines, while trace amine-associated receptors are being explored as a potential treatment target for neuropsychiatric disorders. [11] [12] [13]

For a list of tryptamine derivatives, see: List of substituted tryptamines.

All tryptamine derivatives possess a modified 2-aminoethyl group and/or the addition of a substituent on the indole.

Natural occurrences

For a list of plants, fungi and animals containing tryptamines, see List of psychoactive plants and List of naturally occurring tryptamines.

Mammalian brain

Endogenous levels of tryptamine in the mammalian brain are less than 100 ng per gram of tissue. [14] [15] However, elevated levels of trace amines have been observed in patients with certain neuropsychiatric disorders taking medications, such as bipolar depression and schizophrenia. [16]

Mammalian gut microbiome

Tryptamine is relatively abundant in the gut and feces of humans and rodents. [17] [18] Commensal bacteria, including Ruminococcus gnavus and Clostridium sporogenes in the gastrointestinal tract, possess the enzyme tryptophan decarboxylase, which aids in the conversion of dietary tryptophan to tryptamine. [17] Tryptamine is a ligand for gut epithelial serotonin type 4 (5-HT4) receptors and regulates gastrointestinal electrolyte balance through colonic secretions. [18]

Metabolism

Biosynthesis

To yield tryptamine in vivo, tryptophan decarboxylase removes the carboxylic acid group on the α-carbon of tryptophan. [19] Synthetic modifications to tryptamine can produce serotonin and melatonin; however, these pathways do not occur naturally as the main pathway for endogenous neurotransmitter synthesis. [20]

Conversion of tryptophan to tryptamine, followed by its degradation to indole-3-acetic acid

Catabolism

Monoamine oxidases A and B are the primary enzymes involved in tryptamine metabolism to produce indole-3-acetaldehyde, however it is unclear which isoform is specific to tryptamine degradation. [21]

Mechanisms of action and biological effects

Neuromodulation

Tryptamine can weakly activate the trace amine-associated receptor, TAAR1 (hTAAR1 in humans). [22] [23] [24] Limited studies have considered tryptamine to be a trace neuromodulator capable of regulating the activity of neuronal cell responses without binding to the associated postsynaptic receptors. [24] [25]

hTAAR1

Tryptamine promotes intestinal motility by activating serotonin receptors in the gut to increase colonic secretions.

hTAAR1 is a stimulatory G-protein coupled receptor (GPCR) that is weakly expressed in the intracellular compartment of both pre- and postsynaptic neurons. [26] Tryptamine and other hTAAR1 agonists can increase neuronal firing by inhibiting neurotransmitter recycling through cAMP-dependent phosphorylation of the monoamine reuptake transporter. [27] [25] This mechanism increases the amount of neurotransmitter in the synaptic cleft, subsequently increasing postsynaptic receptor binding and neuronal activation. [25] Conversely, when hTAAR1 are colocalized with G protein-coupled inwardly-rectifying potassium channels (GIRKs), receptor activation reduces neuronal firing by facilitating membrane hyperpolarization through the efflux of potassium ions. [25] The balance between the inhibitory and excitatory activity of hTAAR1 activation highlights the role of tryptamine in the regulation of neural activity. [28]

Activation of hTAAR1 is under investigation as a novel treatment for depression, addiction, and schizophrenia. [29] hTAAR1 is primarily expressed in brain structures associated with dopamine systems, such as the ventral tegmental area (VTA) and serotonin systems in the dorsal raphe nuclei (DRN). [29] Additionally, the hTAAR1 gene is localized at 6q23.2 on the human chromosome, which is a susceptibility locus for mood disorders and schizophrenia. [30] Activation of TAAR1 suggests a potential novel treatment for neuropsychiatric disorders, as TAAR1 agonists produce anti-depressive activity, increased cognition, reduced stress and anti-addiction effects. [28] [30]

Gastrointestinal motility

Tryptamine produced by mutualistic bacteria in the human gut activates serotonin GPCRs ubiquitously expressed along the colonic epithelium. [31] Upon tryptamine binding, the activated 5-HT4 receptor undergoes a conformational change which allows its Gs alpha subunit to exchange GDP for GTP, and its liberation from the 5-HT4 receptor and βγ subunit. [31] GTP-bound Gs activates adenylyl cyclase, which catalyzes the conversion of ATP into cyclic adenosine monophosphate (cAMP). [31] cAMP opens chloride and potassium ion channels to drive colonic electrolyte secretion and promote intestinal motility. [32] [33]

Pharmacodynamics

TAAR1 Activation (EC50) and Binding Affinity (Ki) of Tryptamines [34]
Tryptamine Human TAAR1 Mouse TAAR1 Rat TAAR
EC50 Ki EC50 Ki EC50 Ki
Tryptamine 21 N/A 2.7 1.4 0.41 0.13
Serotonin >50 N/A >50 N/A 5.2 N/A
Psilocin >30 N/A 2.7 17 0.92 1.4
DMT >10 N/A 1.2 3.3 1.5 22
EC50 and Ki values are in micromolar (μM). EC50 reflects the amount

of tryptamine required to elicit 50% of the maximum TAAR1 response.

The smaller the Ki value, the stronger the tryptamine binds to the receptor.

Tryptamine-based therapeutics

Drug Mechanism Treatment Effect Structure
Sumatriptan [35] 5-HT1B and 5-HT1D agonist Migraine Headaches Vasoconstriction of brain blood vessels
Sumatriptan
Rizatriptan [35] 5-HT1B and 5-HT1D agonist Migraine Headaches Vasoconstriction of brain blood vessels
Rizatriptan
Zolmitriptan [35] 5-HT1B and 5-HT1D agonist Migraine Headaches Vasoconstriction of brain blood vessels
Zolmitriptan
Almotriptan [35] 5-HT1B and 5-HT1D agonist Migraine Headaches Vasoconstriction of brain blood vessels
Almotriptan
Eletriptan [35] 5-HT1B and 5-HT1D agonist Migraine Headaches Vasoconstriction of brain blood vessels
Eletriptan
Frovatriptan [35] 5-HT1B and 5-HT1D agonist Migraine Headaches Vasoconstriction of brain blood vessels
Frovatriptan
Naratriptan [35] 5-HT1B and 5-HT1D agonist Migraine Headaches Vasoconstriction of brain blood vessels
Naratriptan

See also

References

  1. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. p. 3-564. ISBN  978-0-8493-0484-2.
  2. ^ a b "Tryptamine". pubchem.ncbi.nlm.nih.gov. Retrieved 2020-12-01.
  3. ^ a b Jenkins, Trisha A.; Nguyen, Jason C. D.; Polglaze, Kate E.; Bertrand, Paul P. (2016-01-20). "Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis". Nutrients. 8 (1): 56. doi: 10.3390/nu8010056. ISSN  2072-6643. PMC  4728667. PMID  26805875.
  4. ^ Tylš, Filip; Páleníček, Tomáš; Horáček, Jiří (2014-03-01). "Psilocybin – Summary of knowledge and new perspectives". European Neuropsychopharmacology. 24 (3): 342–356. doi: 10.1016/j.euroneuro.2013.12.006. ISSN  0924-977X. PMID  24444771. S2CID  10758314.
  5. ^ Tittarelli, Roberta; Mannocchi, Giulio; Pantano, Flaminia; Romolo, Francesco Saverio (2015). "Recreational Use, Analysis and Toxicity of Tryptamines". Current Neuropharmacology. 13 (1): 26–46. doi: 10.2174/1570159X13666141210222409. ISSN  1570-159X. PMC  4462041. PMID  26074742.
  6. ^ "The Ayahuasca Phenomenon". MAPS. 21 November 2014. Retrieved 2020-10-03.
  7. ^ Khan, Muhammad Zahid; Nawaz, Waqas (2016-10-01). "The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system". Biomedicine & Pharmacotherapy. 83: 439–449. doi: 10.1016/j.biopha.2016.07.002. ISSN  0753-3322. PMID  27424325.
  8. ^ Berry, Mark D.; Gainetdinov, Raul R.; Hoener, Marius C.; Shahid, Mohammed (2017-12-01). "Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges". Pharmacology & Therapeutics. 180: 161–180. doi: 10.1016/j.pharmthera.2017.07.002. ISSN  0163-7258. PMID  28723415. S2CID  207366162.
  9. ^ Bhattarai, Yogesh; Williams, Brianna B.; Battaglioli, Eric J.; Whitaker, Weston R.; Till, Lisa; Grover, Madhusudan; Linden, David R.; Akiba, Yasutada; Kandimalla, Karunya K.; Zachos, Nicholas C.; Kaunitz, Jonathan D. (2018-06-13). "Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion". Cell Host & Microbe. 23 (6): 775–785.e5. doi: 10.1016/j.chom.2018.05.004. ISSN  1931-3128. PMC  6055526. PMID  29902441.
  10. ^ Field, Michael (2003). "Intestinal ion transport and the pathophysiology of diarrhea". Journal of Clinical Investigation. 111 (7): 931–943. doi: 10.1172/JCI200318326. ISSN  0021-9738. PMC  152597. PMID  12671039.
  11. ^ "Serotonin Receptor Agonists (Triptans)", LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012, PMID  31644023, retrieved 2020-10-15
  12. ^ "New Compound Related to Psychedelic Ibogaine Could Treat Addiction, Depression". UC Davis. 2020-12-09. Retrieved 2020-12-11.
  13. ^ ServiceDec. 9, Robert F. "Chemists re-engineer a psychedelic to treat depression and addiction in rodents". Science | AAAS. Retrieved 2020-12-11.{{ cite web}}: CS1 maint: numeric names: authors list ( link)
  14. ^ Tittarelli, Roberta; Mannocchi, Giulio; Pantano, Flaminia; Romolo, Francesco Saverio (2015). "Recreational Use, Analysis and Toxicity of Tryptamines". Current Neuropharmacology. 13 (1): 26–46. doi: 10.2174/1570159X13666141210222409. ISSN  1570-159X. PMC  4462041. PMID  26074742.
  15. ^ Berry, Mark D.; Gainetdinov, Raul R.; Hoener, Marius C.; Shahid, Mohammed (2017-12-01). "Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges". Pharmacology & Therapeutics. 180: 161–180. doi: 10.1016/j.pharmthera.2017.07.002. ISSN  0163-7258. PMID  28723415. S2CID  207366162.
  16. ^ Miller, Gregory M. (2011). "The Emerging Role of Trace Amine Associated Receptor 1 in the Functional Regulation of Monoamine Transporters and Dopaminergic Activity". Journal of Neurochemistry. 116 (2): 164–176. doi: 10.1111/j.1471-4159.2010.07109.x. ISSN  0022-3042. PMC  3005101. PMID  21073468.
  17. ^ a b Jenkins, Trisha A.; Nguyen, Jason C. D.; Polglaze, Kate E.; Bertrand, Paul P. (2016-01-20). "Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis". Nutrients. 8 (1): 56. doi: 10.3390/nu8010056. ISSN  2072-6643. PMC  4728667. PMID  26805875.
  18. ^ a b Bhattarai, Yogesh; Williams, Brianna B.; Battaglioli, Eric J.; Whitaker, Weston R.; Till, Lisa; Grover, Madhusudan; Linden, David R.; Akiba, Yasutada; Kandimalla, Karunya K.; Zachos, Nicholas C.; Kaunitz, Jonathan D. (2018-06-13). "Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion". Cell Host & Microbe. 23 (6): 775–785.e5. doi: 10.1016/j.chom.2018.05.004. ISSN  1931-3128. PMC  6055526. PMID  29902441.
  19. ^ Tittarelli, Roberta; Mannocchi, Giulio; Pantano, Flaminia; Romolo, Francesco Saverio (2015). "Recreational Use, Analysis and Toxicity of Tryptamines". Current Neuropharmacology. 13 (1): 26–46. doi: 10.2174/1570159X13666141210222409. ISSN  1570-159X. PMC  4462041. PMID  26074742.
  20. ^ "Serotonin Synthesis and Metabolism". Sigma Aldrich. 2020.
  21. ^ "MetaCyc L-tryptophan degradation VI (via tryptamine)". biocyc.org. Retrieved 2020-12-11.
  22. ^ Yu, Ai-Ming; Granvil, Camille P.; Haining, Robert L.; Krausz, Kristopher W.; Corchero, Javier; Küpfer, Adrian; Idle, Jeffrey R.; Gonzalez, Frank J. (2003-02-01). "The Relative Contribution of Monoamine Oxidase and Cytochrome P450 Isozymes to the Metabolic Deamination of the Trace Amine Tryptamine". Journal of Pharmacology and Experimental Therapeutics. 304 (2): 539–546. doi: 10.1124/jpet.102.043786. ISSN  0022-3565. PMID  12538805. S2CID  18279145.
  23. ^ Khan, Muhammad Zahid; Nawaz, Waqas (2016-10-01). "The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system". Biomedicine & Pharmacotherapy. 83: 439–449. doi: 10.1016/j.biopha.2016.07.002. ISSN  0753-3322. PMID  27424325.
  24. ^ a b Zucchi, R; Chiellini, G; Scanlan, T S; Grandy, D K (2006). "Trace amine-associated receptors and their ligands". British Journal of Pharmacology. 149 (8): 967–978. doi: 10.1038/sj.bjp.0706948. ISSN  0007-1188. PMC  2014643. PMID  17088868.
  25. ^ a b c d Miller, Gregory M. (2011). "The Emerging Role of Trace Amine Associated Receptor 1 in the Functional Regulation of Monoamine Transporters and Dopaminergic Activity". Journal of Neurochemistry. 116 (2): 164–176. doi: 10.1111/j.1471-4159.2010.07109.x. ISSN  0022-3042. PMC  3005101. PMID  21073468.
  26. ^ Berry, Mark D.; Gainetdinov, Raul R.; Hoener, Marius C.; Shahid, Mohammed (2017-12-01). "Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges". Pharmacology & Therapeutics. 180: 161–180. doi: 10.1016/j.pharmthera.2017.07.002. ISSN  0163-7258. PMID  28723415. S2CID  207366162.
  27. ^ Jing, Li; Li, Jun-Xu (2015-08-15). "Trace amine-associated receptor 1: a promising target for the treatment of psychostimulant addiction". European Journal of Pharmacology. 761: 345–352. doi: 10.1016/j.ejphar.2015.06.019. ISSN  0014-2999. PMC  4532615. PMID  26092759.
  28. ^ a b Grandy, David K.; Miller, Gregory M.; Li, Jun-Xu (2016-02-01). ""TAARgeting Addiction" The Alamo Bears Witness to Another Revolution". Drug and Alcohol Dependence. 159: 9–16. doi: 10.1016/j.drugalcdep.2015.11.014. ISSN  0376-8716. PMC  4724540. PMID  26644139.
  29. ^ a b Berry, Mark D.; Gainetdinov, Raul R.; Hoener, Marius C.; Shahid, Mohammed (2017-12-01). "Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges". Pharmacology & Therapeutics. 180: 161–180. doi: 10.1016/j.pharmthera.2017.07.002. ISSN  0163-7258. PMID  28723415. S2CID  207366162.
  30. ^ a b Gainetdinov, Raul R.; Hoener, Marius C.; Berry, Mark D. (2018-07-01). "Trace Amines and Their Receptors". Pharmacological Reviews. 70 (3): 549–620. doi: 10.1124/pr.117.015305. ISSN  0031-6997. PMID  29941461. S2CID  49411553.
  31. ^ a b c Bhattarai, Yogesh; Williams, Brianna B.; Battaglioli, Eric J.; Whitaker, Weston R.; Till, Lisa; Grover, Madhusudan; Linden, David R.; Akiba, Yasutada; Kandimalla, Karunya K.; Zachos, Nicholas C.; Kaunitz, Jonathan D. (2018-06-13). "Gut Microbiota-Produced Tryptamine Activates an Epithelial G-Protein-Coupled Receptor to Increase Colonic Secretion". Cell Host & Microbe. 23 (6): 775–785.e5. doi: 10.1016/j.chom.2018.05.004. ISSN  1931-3128. PMC  6055526. PMID  29902441.
  32. ^ Field, Michael (2003). "Intestinal ion transport and the pathophysiology of diarrhea". Journal of Clinical Investigation. 111 (7): 931–943. doi: 10.1172/JCI200318326. ISSN  0021-9738. PMC  152597. PMID  12671039.
  33. ^ "Microbiome-Lax May Relieve Constipation". GEN - Genetic Engineering and Biotechnology News. 2018-06-15. Retrieved 2020-12-11.
  34. ^ Gainetdinov, Raul R.; Hoener, Marius C.; Berry, Mark D. (2018-07-01). "Trace Amines and Their Receptors". Pharmacological Reviews. 70 (3): 549–620. doi: 10.1124/pr.117.015305. ISSN  0031-6997. PMID  29941461. S2CID  49411553.
  35. ^ a b c d e f g "Serotonin Receptor Agonists (Triptans)", LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012, PMID  31644023, retrieved 2020-10-15

External links