The spherinder can be seen as the volume between two parallel and equal solid 2-
spheres (3-balls) in 4-dimensional space, here stereographically projected into 3D.
Like the
duocylinder, it is also analogous to a
cylinder in 3-space, which is the Cartesian product of a disk with a
line segment.
It can be seen in 3-dimensional space by
stereographic projection as two concentric spheres, in a similar way that a
tesseract (cubic prism) can be projected as two concentric cubes, and how a
circular cylinder can be projected into 2-dimensional space as two concentric circles.
Relation to other shapes
In 3-space, a cylinder can be considered intermediate between a
cube and a
sphere. In 4-space there are three intermediate forms between the
tesseract and the
hypersphere. Altogether, they are the:
tesseract (1-
ball × 1-ball × 1-ball × 1-ball), whose hypersurface is eight
cubes connected at 24
squares
glome (4-
ball), whose hypersurface is a 3-sphere without any connecting boundaries.
These constructions correspond to the five
partitions of 4, the number of dimensions.
If the two ends of a spherinder are connected together, or equivalently if a sphere is dragged around a circle perpendicular to its 3-space, it traces out a spheritorus. If the two ends of an uncapped spherinder are rolled inward, the resulting shape is a torisphere.
Spherindrical coordinate system
One can define a "spherindrical" coordinate system (r, θ, φ, w), consisting of
spherical coordinates with an extra coordinate w. This is analogous to how
cylindrical coordinates are defined: r and φ being
polar coordinates with an elevation coordinate z. Spherindrical coordinates can be converted to Cartesian coordinates using the formulas
where r is the radius, θ is the zenith angle, φ is the azimuthal angle, and w is the height. Cartesian coordinates can be converted to spherindrical coordinates using the formulas
Given a spherinder with a spherical base of radius r and a height h, the hypervolume of the spherinder is given by
Surface volume
The surface volume of a spherinder, like the surface area of a cylinder, is made up of three parts:
the volume of the top base:
the volume of the bottom base:
the volume of the lateral 3D surface: , which is the surface area of the spherical base times the height
Therefore, the total surface volume is
Proof
The above formulas for hypervolume and surface volume can be proven using integration. The hypervolume of an arbitrary 4D region is given by the quadruple integral
The hypervolume of the spherinder can be integrated over spherindrical coordinates.
The Fourth Dimension Simply Explained, Henry P. Manning, Munn & Company, 1910, New York. Available from the University of Virginia library. Also accessible online:
The Fourth Dimension Simply Explained—contains a description of duoprisms and duocylinders (double cylinders)
The Visual Guide To Extra Dimensions: Visualizing The Fourth Dimension, Higher-Dimensional Polytopes, And Curved Hypersurfaces, Chris McMullen, 2008,
ISBN978-1438298924