## The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. ( Full article...)

## Featured articles – load new batch

Featured articles are displayed here, which represent some of the best content on English Wikipedia.

## Selected image – show another

Credit:  Linas Vepstas
This is a graph of a portion of the complex-valued Riemann zeta function along the critical line (the set of complex numbers having real part equal to 1/2). More specifically, it is a graph of Im ζ(1/2 + it) versus Re ζ(1/2 + it) (the imaginary part vs. the real part) for values of the real variable t running from 0 to 34 (the curve starts at its leftmost point, with real part approximately −1.46 and imaginary part 0). The first five zeros along the critical line are visible in this graph as the five times the curve passes through the origin (which occur at t   14.13, 21.02, 25.01, 30.42, and 32.93 — for a different perspective, see a graph of the real and imaginary parts of this function plotted separately over a wider range of values). In 1914, G. H. Hardy proved that ζ(1/2 + it) has infinitely many zeros. According to the Riemann hypothesis, zeros of this form constitute the only non-trivial zeros of the full zeta function, ζ(s), where s varies over all complex numbers. Riemann's zeta function grew out of Leonhard Euler's study of real-valued infinite series in the early 18th century. In a famous 1859 paper called " On the Number of Primes Less Than a Given Magnitude", Bernhard Riemann extended Euler's results to the complex plane and established a relation between the zeros of his zeta function and the distribution of prime numbers. The paper also contained the previously mentioned Riemann hypothesis, which is considered by many mathematicians to be the most important unsolved problem in pure mathematics. The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics.

## Good articles – load new batch

These are Good articles, which meet a core set of high editorial standards.

## More did you know – view different entries

Showing 7 items out of 75

## Selected article – show another A pentagram colored to distinguish its line segments of different lengths. The four lengths are in golden ratio to one anotherImage credit: User:PAR

In mathematics and the arts, two quantities are in the golden ratio if the ratio between the sum of those quantities and the larger one is the same as the ratio between the larger one and the smaller. The golden ratio is a mathematical constant, usually denoted by the Greek letter φ ( phi).

Expressed algebraically, two quantities a and b (assuming $a>b$ ) are therefore in the golden ratio if

${\frac {a+b}{a}}={\frac {a}{b}}=\varphi \,.$ It follows from this property that φ satisfies the quadratic equation φ2 = φ + 1 and is therefore an algebraic irrational number, given by

$\varphi ={\frac {1+{\sqrt {5}}}{2}},\,$ which is approximately equal to 1.6180339887.

At least since the Renaissance, many artists and architects have proportioned their works to approximate the golden ratio—especially in the form of the golden rectangle, in which the ratio of the longer side to the shorter is the golden ratio—believing this proportion to be aesthetically pleasing. Mathematicians have studied the golden ratio because of its unique and interesting properties.

Other names frequently used for or closely related to the golden ratio are golden section (Latin: sectio aurea), golden mean, golden number, divine proportion (Italian: proporzionedivina), divine section (Latin: sectio divina), golden proportion, golden cut, and mean of Phidias. ( Full article...)

## Subcategories

Full category tree. Select [►] to view subcategories.

## Index of mathematics articles

 ARTICLE INDEX: MATHEMATICIANS:

## WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

## In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Free media repository

Free textbooks and manuals

Free knowledge base

Free-content news

Collection of quotations

Free-content library

Free learning tools

Dictionary and thesaurus

## More portals

Discover Wikipedia using portals