Slightly smaller than
Earth's Moon, Europa is made of
silicate rock and has a water-ice crust[16] and probably an
iron–nickel core. It has a very thin atmosphere, composed primarily of oxygen. Its geologically young white-
beige surface is
striated by light
tan cracks and streaks, with very few impact craters. In addition to Earth-bound telescope observations, Europa has been examined by a succession of space-probe flybys, the first occurring in the early 1970s. In September 2022, the
Juno spacecraft flew within about 320 km (200 miles) of Europa for a more recent close-up view.[17]
Europa has the smoothest surface of any known solid object in the Solar System. The apparent youth and smoothness of the surface is due to a
water ocean beneath the surface, which could conceivably harbor
extraterrestrial life, although it would most likely be that of
single celled organisms and
bacteria-like creatures.[18] The predominant model suggests that heat from
tidal flexing causes the ocean to remain liquid and drives ice movement similar to
plate tectonics, absorbing chemicals from the surface into the ocean below.[19][20]Sea salt from a subsurface ocean may be coating some geological features on Europa, suggesting that the ocean is interacting with the sea floor. This may be important in determining whether Europa could be habitable.[21] In addition, the
Hubble Space Telescope detected
water vapor plumes similar to those observed on Saturn's moon
Enceladus, which are thought to be caused by erupting
cryogeysers.[22] In May 2018, astronomers provided supporting evidence of water plume activity on Europa, based on an updated analysis of data obtained from the Galileo space probe, which orbited Jupiter from 1995 to 2003. Such plume activity could help researchers in a search for life from the subsurface Europan ocean without having to land on the moon.[23][24][25][26] In March 2024, astronomers reported that the surface of Europa may have much less
oxygen than previously inferred.[27][28]
The Galileo mission, launched in 1989, provides the bulk of current data on Europa. No spacecraft has yet landed on Europa, although there have been several proposed exploration missions. The
European Space Agency's
Jupiter Icy Moon Explorer (JUICE) is a mission to
Ganymede launched on 14 April 2023, that will include two flybys of Europa.[29][30] NASA's
Europa Clipper is expected to be launched in October 2024,[31][32] with a complementary lander possible based on its findings.
Discovery and naming
Europa, along with Jupiter's three other large moons,
Io,
Ganymede, and
Callisto, was discovered by
Galileo Galilei on 8 January 1610,[2] and possibly independently by
Simon Marius. On 7 January, Galileo had observed Io and Europa together using a
20×-magnification refracting telescope at the
University of Padua, but the low resolution could not separate the two objects. The following night, he saw Io and Europa for the first time as separate bodies.[2]
The moon is the namesake of
Europa, in
Greek mythology the daughter of the
Phoenician king of
Tyre. Like all the Galilean satellites, Europa is named after a lover of
Zeus, the Greek counterpart of
Jupiter. Europa was courted by Zeus and became the queen of
Crete.[33] The naming scheme was suggested by Simon Marius,[34] who attributed the proposal to
Johannes Kepler:[34][35]
Jupiter is much blamed by the poets on account of his irregular loves. Three maidens are especially mentioned as having been clandestinely courted by Jupiter with success. Io, daughter of the River Inachus, Callisto of Lycaon, Europa of Agenor. Then there was Ganymede, the handsome son of King Tros, whom Jupiter, having taken the form of an eagle, transported to heaven on his back, as poets fabulously tell... I think, therefore, that I shall not have done amiss if the First is called by me Io, the Second Europa, the Third, on account of its majesty of light, Ganymede, the Fourth Callisto...[36][37]
The names fell out of favor for a considerable time and were not revived in general use until the mid-20th century.[38] In much of the earlier
astronomical literature, Europa is simply referred to by its
Roman numeral designation as Jupiter II (a system also introduced by Galileo) or as the "second satellite of Jupiter". In 1892, the discovery of
Amalthea, whose orbit lay closer to Jupiter than those of the Galilean moons, pushed Europa to the third position. The
Voyager probes discovered three more
inner satellites in 1979, so Europa is now counted as Jupiter's sixth satellite, though it is still referred to as Jupiter II.[38]
The adjectival form has stabilized as Europan.[5][39]
Orbit and rotation
Europa orbits Jupiter in just over three and a half days, with an orbital radius of about 670,900 km. With an
orbital eccentricity of only 0.009, the orbit itself is nearly circular, and the
orbital inclination relative to Jupiter's
equatorial plane is small, at 0.470°.[40] Like its fellow
Galilean satellites, Europa is
tidally locked to Jupiter, with one hemisphere of Europa constantly facing Jupiter. Because of this, there is a
sub-Jovian point on Europa's surface, from which Jupiter would appear to hang directly overhead. Europa's
prime meridian is a line passing through this point.[41] Research suggests that tidal locking may not be full, as a
non-synchronous rotation has been proposed: Europa spins faster than it orbits, or at least did so in the past. This suggests an asymmetry in internal mass distribution and that a layer of subsurface liquid separates the icy crust from the rocky interior.[11]
The slight eccentricity of Europa's orbit, maintained by gravitational disturbances from the other Galileans, causes Europa's sub-Jovian point to oscillate around a mean position. As Europa comes slightly nearer to Jupiter, Jupiter's gravitational attraction increases, causing Europa to elongate towards and away from it. As Europa moves slightly away from Jupiter, Jupiter's gravitational force decreases, causing Europa to relax back into a more spherical shape, and creating tides in its ocean. The orbital eccentricity of Europa is continuously pumped by its
mean-motion resonance with Io.[42] Thus, the
tidal flexing kneads Europa's interior and gives it a source of heat, possibly allowing its ocean to stay liquid while driving subsurface geological processes.[19][42] The ultimate source of this energy is Jupiter's rotation, which is tapped by Io through the tides it raises on Jupiter and is transferred to Europa and Ganymede by the orbital resonance.[42][43]
Analysis of the unique cracks lining Europa yielded evidence that it likely spun around a tilted axis at some point in time. If correct, this would explain many of Europa's features. Europa's immense network of crisscrossing cracks serves as a record of the stresses caused by massive tides in its global ocean. Europa's tilt could influence calculations of how much of its history is recorded in its frozen shell, how much heat is generated by tides in its ocean, and even how long the ocean has been liquid. Its ice layer must stretch to accommodate these changes. When there is too much stress, it cracks. A tilt in Europa's axis could suggest that its cracks may be much more recent than previously thought. The reason for this is that the direction of the spin pole may change by as much as a few degrees per day, completing one precession period over several months. A tilt could also affect estimates of the age of Europa's ocean. Tidal forces are thought to generate the heat that keeps Europa's ocean liquid, and a tilt in the spin axis would cause more heat to be generated by tidal forces. Such additional heat would have allowed the ocean to remain liquid for a longer time. However, it has not yet been determined when this hypothesized shift in the spin axis might have occurred.[44]
Physical characteristics
Europa is slightly smaller than the
Earth's moon. At just over 3,100 kilometres (1,900 mi) in
diameter, it is the
sixth-largest moon and
fifteenth-largest object in the
Solar System. Though by a wide margin the least massive of the Galilean satellites, it is nonetheless more massive than all known moons in the Solar System smaller than itself combined.[45] Its bulk density suggests that it is similar in composition to
terrestrial planets, being primarily composed of
silicaterock.[46]
Internal structure
It is estimated that Europa has an outer layer of
water around 100 km (62 mi) thick – a part frozen as its crust and a part as a liquid ocean underneath the ice. Recent
magnetic-field data from the
Galileo orbiter showed that Europa has an induced magnetic field through interaction with Jupiter's, which suggests the presence of a subsurface conductive layer.[47] This layer is likely to be a salty liquid-water ocean. Portions of the crust are estimated to have undergone a rotation of nearly 80°, nearly flipping over (see
true polar wander), which would be unlikely if the ice were solidly attached to the mantle.[48] Europa probably contains a
metalliciron core.[49][50]
Surface features
Europa is the smoothest known object in the Solar System, lacking large-scale features such as mountains and craters.[51] The prominent markings crisscrossing Europa appear to be mainly
albedo features that emphasize low topography. There are few craters on Europa, because its surface is tectonically too active and therefore young.[52][53] Its icy crust has an
albedo (light reflectivity) of 0.64, one of the highest of any moon.[40][53] This indicates a young and active surface: based on estimates of the frequency of
cometary bombardment that Europa experiences, the surface is about 20 to 180 million years old.[54] There is no scientific consensus about the explanation for Europa's surface features.[55]
It has been postulated Europa's equator may be covered in icy spikes called
penitentes, which may be up to 15 meters high. Their formation is due to direct overhead sunlight near the equator causing the ice to
sublime, forming vertical cracks.[56][57][58] Although the imaging available from the Galileo orbiter does not have the resolution for confirmation, radar and thermal data are consistent with this speculation.[58]
The
ionizing radiation level at Europa's surface is equivalent to a daily dose of about 5.4
Sv (540
rem),[59] an amount that would cause severe illness or death in human beings exposed for a single Earth day (24 hours).[60] A Europan day is about 3.5 times as long as an Earth day.[61]
Europa's most striking surface features are a series of dark streaks crisscrossing the entire globe, called
lineae (English: lines). Close examination shows that the edges of Europa's crust on either side of the cracks have moved relative to each other. The larger bands are more than 20 km (12 mi) across, often with dark, diffuse outer edges, regular striations, and a central band of lighter material.[64]
The most likely hypothesis is that the lineae on Europa were produced by a series of eruptions of warm ice as Europa's crust slowly spreads open to expose warmer layers beneath.[65] The effect would have been similar to that seen on Earth's
oceanic ridges. These various fractures are thought to have been caused in large part by the tidal flexing exerted by Jupiter. Because Europa is tidally locked to Jupiter, and therefore always maintains approximately the same orientation towards Jupiter, the stress patterns should form a distinctive and predictable pattern. However, only the youngest of Europa's fractures conform to the predicted pattern; other fractures appear to occur at increasingly different orientations the older they are. This could be explained if Europa's surface rotates slightly faster than its interior, an effect that is possible due to the subsurface ocean mechanically decoupling Europa's surface from its rocky mantle and the effects of Jupiter's gravity tugging on Europa's outer ice crust.[66] Comparisons of Voyager and Galileo spacecraft photos serve to put an upper limit on this hypothetical slippage. A full revolution of the outer rigid shell relative to the interior of Europa takes at least 12,000 years.[67] Studies of Voyager and Galileo images have revealed evidence of
subduction on Europa's surface, suggesting that, just as the cracks are analogous to ocean ridges,[68][69] so plates of icy crust analogous to
tectonic plates on Earth are recycled into the molten interior. This evidence of both crustal spreading at bands[68] and convergence at other sites[69] suggests that Europa may have active
plate tectonics, similar to Earth.[20] However, the physics driving these plate tectonics are not likely to resemble those driving terrestrial plate tectonics, as the forces resisting potential Earth-like plate motions in Europa's crust are significantly stronger than the forces that could drive them.[70]
Left: surface features indicative of
tidal flexing: lineae, lenticulae and the
Conamara Chaos region (close-up, right) where craggy, 250 m high peaks and smooth plates are jumbled together
Other features present on Europa are circular and elliptical lenticulae (
Latin for "freckles"). Many are domes, some are pits and some are smooth, dark spots. Others have a jumbled or rough texture. The dome tops look like pieces of the older plains around them, suggesting that the domes formed when the plains were pushed up from below.[71]
One hypothesis states that these lenticulae were formed by
diapirs of warm ice rising up through the colder ice of the outer crust, much like
magma chambers in Earth's crust.[71] The smooth, dark spots could be formed by
meltwater released when the warm ice breaks through the surface. The rough, jumbled lenticulae (called regions of "chaos"; for example,
Conamara Chaos) would then be formed from many small fragments of crust, embedded in hummocky, dark material, appearing like
icebergs in a frozen sea.[72]
An alternative hypothesis suggests that lenticulae are actually small areas of chaos and that the claimed pits, spots and domes are artefacts resulting from the over-interpretation of early, low-resolution Galileo images. The implication is that the ice is too thin to support the convective diapir model of feature formation.[73][74]
In November 2011, a team of researchers, including researchers at
University of Texas at Austin, presented evidence suggesting that many "
chaos terrain" features on Europa sit atop vast lakes of liquid water.[75][76] These lakes would be entirely encased in Europa's icy outer shell and distinct from a liquid ocean thought to exist farther down beneath the ice shell. Full confirmation of the lakes' existence will require a space mission designed to probe the ice shell either physically or indirectly, e.g. using radar.[76] Chaos features may also be a result of increased melting of the ice shell and deposition of marine ice at low latitudes as a result of heterogeneous heating. [77]
Work published by researchers from
Williams College suggests that chaos terrain may represent sites where impacting comets penetrated through the ice crust and into an underlying ocean.[78][79]
Subsurface ocean
The scientific consensus is that a layer of liquid water exists beneath Europa's surface, and that heat from tidal flexing allows the
subsurface ocean to remain liquid.[19][80] Europa's surface temperature averages about 110
K (−160
°C; −260
°F) at the equator and only 50 K (−220 °C; −370 °F) at the poles, keeping Europa's icy crust as hard as granite.[14] The first hints of a subsurface ocean came from theoretical considerations of tidal heating (a consequence of Europa's slightly eccentric orbit and orbital resonance with the other Galilean moons). Galileo imaging team members argue for the existence of a subsurface ocean from analysis of Voyager and Galileo images.[80] The most dramatic example is "chaos terrain", a common feature on Europa's surface that some interpret as a region where the subsurface ocean has melted through the icy crust. This interpretation is controversial. Most geologists who have studied Europa favor what is commonly called the "thick ice" model, in which the ocean has rarely, if ever, directly interacted with the present surface.[81] The best evidence for the thick-ice model is a study of Europa's large craters. The largest impact structures are surrounded by concentric rings and appear to be filled with relatively flat, fresh ice; based on this and on the calculated amount of heat generated by Europan tides, it is estimated that the outer crust of solid ice is approximately 10 to 30 km (6 to 20 mi) thick,[82] including a ductile "warm ice" layer, which could mean that the liquid ocean underneath may be about 100 km (60 mi) deep.[83] This leads to a volume of Europa's oceans of 3×1018m3, between two or three times the volume of Earth's oceans.[84][85]
The thin-ice model suggests that Europa's ice shell may be only a few kilometers thick. However, most planetary scientists conclude that this model considers only those topmost layers of Europa's crust that behave elastically when affected by Jupiter's tides.[86] One example is flexure analysis, in which Europa's crust is modeled as a plane or sphere weighted and flexed by a heavy load. Models such as this suggest the outer elastic portion of the ice crust could be as thin as 200 metres (660 ft). If the ice shell of Europa is really only a few kilometers thick, this "thin ice" model would mean that regular contact of the liquid interior with the surface could occur through open ridges, causing the formation of areas of chaotic terrain.[86] Large impacts going fully through the ice crust would also be a way that the subsurface ocean could be exposed.[78][79]
Composition
The Galileo orbiter found that Europa has a weak
magnetic moment, which is induced by the varying part of the Jovian magnetic field. The field strength at the magnetic equator (about 120
nT) created by this magnetic moment is about one-sixth the strength of Ganymede's field and six times the value of Callisto's.[87] The existence of the induced moment requires a layer of a highly electrically conductive material in Europa's interior. The most plausible candidate for this role is a large subsurface ocean of liquid saltwater.[49]
Europa Closeups
29 September 2022
9 September 2022
Since the Voyager spacecraft flew past Europa in 1979, scientists have worked to understand the composition of the reddish-brown material that coats fractures and other geologically youthful features on Europa's surface.[88] Spectrographic evidence suggests that the darker, reddish streaks and features on Europa's surface may be rich in salts such as
magnesium sulfate, deposited by evaporating water that emerged from within.[89]Sulfuric acid hydrate is another possible explanation for the contaminant observed spectroscopically.[90] In either case, because these materials are colorless or white when pure, some other material must also be present to account for the reddish color, and
sulfur compounds are suspected.[91]
Another hypothesis for the colored regions is that they are composed of abiotic
organic compounds collectively called
tholins.[93][94][95] The morphology of Europa's impact craters and ridges is suggestive of fluidized material welling up from the fractures where
pyrolysis and
radiolysis take place. In order to generate colored tholins on Europa, there must be a source of materials (carbon, nitrogen, and water) and a source of energy to make the reactions occur. Impurities in the water ice crust of Europa are presumed both to emerge from the interior as
cryovolcanic events that resurface the body, and to accumulate from space as interplanetary dust.[93] Tholins bring important
astrobiological implications, as they may play a role in prebiotic chemistry and
abiogenesis.[96][97][98]
The presence of
sodium chloride in the internal ocean has been suggested by a 450 nm absorption feature, characteristic of irradiated NaCl crystals, that has been spotted in
HST observations of the chaos regions, presumed to be areas of recent subsurface upwelling.[99] The subterranean ocean of Europa contains carbon[100] and was observed on the surface ice as a concentration of
carbon dioxide within Tara Regio, a geologically recently resurfaced terrain.[101]
Sources of heat
Europa receives thermal energy from
tidal heating, which occurs through the tidal friction and tidal flexing processes caused by
tidal acceleration: orbital and rotational energy are dissipated as heat in the
core of the moon, the internal ocean, and the ice crust.[102]
Tidal friction
Ocean tides are converted to heat by frictional losses in the oceans and their interaction with the solid bottom and with the top ice crust. In late 2008, it was suggested Jupiter may keep Europa's oceans warm by generating large planetary tidal waves on Europa because of its small but non-zero obliquity. This generates so-called
Rossby waves that travel quite slowly, at just a few kilometers per day, but can generate significant kinetic energy. For the current axial tilt estimate of 0.1 degree, the resonance from Rossby waves would contain 7.3×1018 J of kinetic energy, which is two thousand times larger than that of the flow excited by the dominant tidal forces.[103][104] Dissipation of this energy could be the principal heat source of Europa's ocean.[103][104]
Tidal flexing
Tidal flexing kneads Europa's interior and ice shell, which becomes a source of heat.[105] Depending on the amount of tilt, the heat generated by the ocean flow could be 100 to thousands of times greater than the heat generated by the flexing of Europa's rocky core in response to the gravitational pull from Jupiter and the other moons circling that planet.[106] Europa's seafloor could be heated by the moon's constant flexing, driving hydrothermal activity similar to undersea volcanoes in Earth's oceans.[102]
Experiments and ice modeling published in 2016, indicate that tidal flexing dissipation can generate one order of magnitude more heat in Europa's ice than scientists had previously assumed.[107][108] Their results indicate that most of the heat generated by the ice actually comes from the ice's
crystalline structure (lattice) as a result of deformation, and not friction between the ice grains.[107][108] The greater the deformation of the ice sheet, the more heat is generated.
Radioactive decay
In addition to tidal heating, the interior of Europa could also be heated by the decay of radioactive material (
radiogenic heating) within the rocky mantle.[102][109] But the models and values observed are one hundred times higher than those that could be produced by radiogenic heating alone,[110] thus implying that tidal heating has a leading role in Europa.[111]
Plumes
The
Hubble Space Telescope acquired an image of Europa in 2012 that was interpreted to be a plume of water vapour erupting from near its south pole.[113][112] The image suggests the plume may be 200 km (120 mi) high, or more than 20 times the height of Mt. Everest.,[22][114][115] though recent observations and modeling suggest that typical Europan plumes may be much smaller.[116][117][118] It has been suggested that if plumes exist, they are episodic[119] and likely to appear when Europa is at its farthest point from Jupiter, in agreement with
tidal force modeling predictions.[120] Additional imaging evidence from the Hubble Space Telescope was presented in September 2016.[121][122]
In May 2018, astronomers provided supporting evidence of water plume activity on Europa, based on an updated critical analysis of data obtained from the Galileo space probe, which orbited Jupiter between 1995 and 2003. Galileo flew by Europa in 1997 within 206 km (128 mi) of the moon's surface and the researchers suggest it may have flown through a water plume.[23][24][25][26] Such plume activity could help researchers in a
search for life from the subsurface Europan ocean without having to land on the moon.[23]
The tidal forces are about 1,000 times stronger than the Moon's effect on
Earth. The only other moon in the Solar System exhibiting water vapor plumes is
Enceladus.[22] The estimated eruption rate at Europa is about 7000 kg/s[120] compared to about 200 kg/s for the plumes of Enceladus.[123][124] If confirmed, it would open the possibility of a flyby through the plume and obtain a sample to analyze in situ without having to use a lander and drill through kilometres of ice.[121][125][126]
In November 2020, a study was published in the peer-reviewed scientific journal Geophysical Research Letters suggesting that the plumes may originate from water within the crust of Europa as opposed to its subsurface ocean. The study's model, using images from the Galileo space probe, proposed that a combination of freezing and pressurization may result in at least some of the cryovolcanic activity. The pressure generated by migrating briny water pockets would thus, eventually, burst through the crust, thereby creating these plumes. The hypothesis that cryovolcanism on Europa could be triggered by freezing and pressurization of liquid pockets in the icy crust was first proposed by Sarah Fagents at the University of Hawai'i at Mānoa, who in 2003, was the first to model and publish work on this process.[127] A press release from NASA's Jet Propulsion Laboratory referencing the November 2020 study suggested that plumes sourced from migrating liquid pockets could potentially be less hospitable to life. This is due to a lack of substantial energy for organisms to thrive off, unlike proposed hydrothermal vents on the subsurface ocean floor.[128][129]
Atmosphere
The atmosphere of Europa can be categorized as thin and tenuous (often called an exosphere), primarily composed of oxygen and trace amounts of water vapor.[130] However, this quantity of oxygen is produced in a non-biological manner. Given that Europa's surface is icy, and subsequently very cold; as solar ultraviolet radiation and charged particles (ions and electrons) from the Jovian magnetospheric environment collide with Europa's surface, water vapor is created and instantaneously separated into oxygen and hydrogen constituents. As it continues to move, the hydrogen is light enough to pass through the surface gravity of the atmosphere leaving behind only oxygen.[131] The surface-bounded atmosphere forms through radiolysis, the
dissociation of molecules through radiation.[132] This accumulated oxygen atmosphere can get to a height of 190 km (120 mi) above the surface of Europa. Molecular oxygen is the densest component of the atmosphere because it has a long lifetime; after returning to the surface, it does not stick (freeze) like a water or
hydrogen peroxide molecule but rather desorbs from the surface and starts another
ballistic arc. Molecular hydrogen never reaches the surface, as it is light enough to escape Europa's surface gravity.[133][134] Europa is one of the few moons in our solar system with a quantifiable atmosphere, along with
Titan,
Io,
Triton,
Ganymede and
Callisto.[135] Europa is also one of several moons in our solar system with very large quantities of
ice (volatiles), otherwise known as "icy moons."[136]
Europa is also considered to be geologically active due to the constant release of hydrogen-oxygen mixtures into space. As a result of the moon's particle venting, the atmosphere requires continuous replenishment.[131] Europa also contains a small magnetosphere (approximately 25% of Ganymede's). However, this magnetosphere varies in size as Europa orbits through Jupiter's magnetic field. This confirms that a conductive element, such as a large ocean, likely lies below its icy surface.[137] As multiple studies have been conducted over Europa's atmosphere, several findings conclude that not all oxygen molecules are released into the atmosphere. This unknown percentage of oxygen may be absorbed into the surface and sink into the subsurface. Because the surface may interact with the subsurface ocean (considering the geological discussion above), this molecular oxygen may make its way to the ocean, where it could aid in biological processes.[138][139] One estimate suggests that, given the turnover rate inferred from the apparent ~0.5 Gyr maximum age of Europa's surface ice, subduction of radiolytically generated oxidizing species might well lead to oceanic free oxygen concentrations that are comparable to those in terrestrial deep oceans.[140]
Through the slow release of oxygen and hydrogen, a neutral torus around Europa's orbital plane is formed. This "neutral cloud" has been detected by both the Cassini and Galileo spacecraft, and has a greater content (number of atoms and molecules) than the neutral cloud surrounding Jupiter's inner moon Io.[141] This torus was officially confirmed using Energetic Neutral Atom (ENA) imaging. Europa's torus ionizes through the process of neutral particles exchanging electrons with its charged particles. Since Europa's magnetic field rotates faster than its orbital velocity, these ions are left in the path of its magnetic field trajectory, forming a plasma. It has been hypothesized that these ions are responsible for the plasma within Jupiter's magnetosphere.[142]
On 4 March 2024, astronomers reported that the surface of Europa may have much less
oxygen than previously inferred.[27][28]
Discovery of atmosphere
The atmosphere of Europa was first discovered in 1995 by astronomers D. T. Hall and collaborators using the
Goddard High Resolution Spectrograph instrument of the
Hubble Space Telescope.[143] This observation was further supported in 1997 by the Galileo orbiter during its mission within the Jovian system. The Galileo orbiter performed three radio occultation events of Europa, where the probe's radio contact with Earth was temporarily blocked by passing behind Europa. By analyzing the effects Europa's sparse atmosphere had on the radio signal just before and after the occultation, for a total of six events, a team of astronomers led by A. J. Kliore established the presence of an
ionized layer in Europa's atmosphere.[144]
Climate and weather
Despite the presence of a
gas torus, Europa has no weather producing clouds. As a whole, Europa has no wind, precipitation, or presence of sky color as its gravity is too low to hold an atmosphere substantial enough for those features. Europa's gravity is approximately 13% of Earth's. The temperature on Europa varies from −160 °C at the equator, to −220 °C at either of its poles.[145] Europa's subsurface ocean is thought to be significantly[clarification needed] warmer however. It is hypothesized that because of radioactive and tidal heating (as mentioned in the sections above), there are points in the depths of Europa's ocean that may be only slightly cooler than Earth's oceans. Studies have also concluded that Europa's ocean would have been rather acidic at first, with large concentrations of sulfate, calcium, and carbon dioxide. But over the course of 4.5 billion years, it became full[clarification needed] of
chloride, thus resembling our 1.94% chloride oceans on Earth.
Exploration
In 1973 Pioneer 10 made the first closeup images of Europa – however the probe was too far away to obtain more detailed images
Exploration of Europa began with the Jupiter flybys of Pioneer 10 and 11 in 1973 and 1974, respectively. The first closeup photos were of low resolution compared to later missions. The two Voyager probes traveled through the
Jovian system in 1979, providing more-detailed images of Europa's icy surface. The images caused many scientists to speculate about the possibility of a liquid ocean underneath.
Starting in 1995, the
Galileo space probe orbited Jupiter for eight years, until 2003, and provided the most detailed examination of the Galilean moons to date. It included the "Galileo Europa Mission" and "Galileo Millennium Mission", with numerous close flybys of Europa.[146] In 2007, New Horizons imaged Europa, as it flew by the Jovian system while on its way to
Pluto.[147] In 2022, the Juno orbiter flew by Europa at a distance of 352 km (219 mi).[17][148]
In 2012, Jupiter Icy Moons Explorer (JUICE) was selected by the European Space Agency (
ESA) as a planned mission.[30][149] That mission includes two flybys of Europa, but is more focused on
Ganymede.[150] It was launched in 2023, and is expected to reach Jupiter in July 2031 after four gravity assists and eight years of travel.[151]
Future missions
Conjectures regarding
extraterrestrial life have ensured a high profile for Europa and have led to steady lobbying for future missions.[152][153] The aims of these missions have ranged from examining Europa's chemical composition to searching for extraterrestrial life in its hypothesized subsurface oceans.[154][155] Robotic missions to Europa need to endure the high-radiation environment around Jupiter.[153] Because it is deeply embedded within
Jupiter's magnetosphere, Europa receives about 5.40
Sv of radiation per day.[156]
In 2011, a Europa mission was recommended by the U.S.
Planetary Science Decadal Survey.[157] In response, NASA commissioned concept studies of a Europa lander in 2011, along with concepts for a Europa flyby (Europa Clipper), and a Europa orbiter.[158][159] The orbiter element option concentrates on the "ocean" science, while the multiple-flyby element (Clipper) concentrates on the chemistry and energy science. On 13 January 2014, the House Appropriations Committee announced a new bipartisan bill that includes $80 million in funding to continue the Europa mission concept studies.[160][161]
Europa Clipper – In July 2013 an updated concept for a flyby Europa mission called Europa Clipper was presented by the
Jet Propulsion Laboratory (JPL) and the
Applied Physics Laboratory (APL).[162] In May 2015, NASA announced that it had accepted development of the Europa Clipper mission, and revealed the instruments it would use.[163] The aim of Europa Clipper is to explore Europa in order to investigate its
habitability, and to aid in selecting sites for a future lander. The Europa Clipper would not orbit Europa, but instead orbit Jupiter and conduct 45 low-altitude
flybys of Europa during its envisioned mission. The probe would carry an ice-penetrating radar, short-wave infrared spectrometer, topographical imager, and an ion- and neutral-mass spectrometer. The mission is scheduled to launch in October 2024 aboard a
Falcon Heavy.[164]
Europa Lander is a recent NASA concept mission under study. 2018 research suggests Europa may be covered in tall, jagged ice spikes, presenting a problem for any potential landing on its surface.[165][166]
Jovian Europa Orbiter was an ESA Cosmic Vision concept study from 2007. Another concept was Ice Clipper,[170] which would have used an impactor similar to the Deep Impact mission—it would make a controlled crash into the surface of Europa, generating a plume of debris that would then be collected by a small spacecraft flying through the plume.[170][171]
Jupiter Icy Moons Orbiter (JIMO) was a partially developed fission-powered spacecraft with ion thrusters that was cancelled in 2006.[153][172] It was part of
Project Prometheus.[172] The Europa Lander Mission proposed a small nuclear-powered Europa lander for JIMO.[173] It would travel with the orbiter, which would also function as a communication relay to Earth.[173]
Europa Orbiter – Its objective would be to characterize the extent of the ocean and its relation to the deeper interior. Instrument payload could include a radio subsystem,
laser altimeter,
magnetometer,
Langmuir probe, and a mapping camera.[174][175] The Europa Orbiter received the go-ahead in 1999 but was canceled in 2002. This orbiter featured a special ice-penetrating radar that would allow it to scan below the surface.[51]
More ambitious ideas have been put forward including an impactor in combination with a thermal drill to search for
biosignatures that might be frozen in the shallow subsurface.[176][177]
Another proposal put forward in 2001 calls for a large
nuclear-powered "melt probe" (
cryobot) that would melt through the ice until it reached an ocean below.[153][178] Once it reached the water, it would deploy an autonomous underwater vehicle (
hydrobot) that would gather information and send it back to Earth.[179] Both the cryobot and the hydrobot would have to undergo some form of extreme sterilization to prevent detection of Earth organisms instead of native life and to prevent
contamination of the subsurface ocean.[180] This suggested approach has not yet reached a formal conceptual planning stage.[181]
Habitability
So far, there is no evidence that life exists on Europa, but the moon has emerged as one of the most likely locations in the Solar System for potential habitability.[140][182] Life could exist in its under-ice ocean, perhaps in an environment similar to Earth's deep-ocean
hydrothermal vents.[154][183] Even if Europa lacks volcanic hydrothermal activity, a 2016 NASA study found that Earth-like levels of hydrogen and oxygen could be produced through processes related to
serpentinization and ice-derived oxidants, which do not directly involve
volcanism.[184] In 2015, scientists announced that salt from a
subsurface ocean may likely be coating some geological features on Europa, suggesting that the ocean is interacting with the seafloor. This may be important in determining if Europa could be habitable.[21][185] The likely presence of liquid water in contact with Europa's rocky
mantle has spurred calls to send a probe there.[186]
The energy provided by tidal forces drives active geological processes within Europa's interior, just as they do to a far more obvious degree on its sister moon
Io. Although Europa, like the Earth, may possess an internal energy source from radioactive decay, the energy generated by tidal flexing would be several orders of magnitude greater than any radiological source.[187] Life on Europa could exist clustered around hydrothermal vents on the ocean floor, or below the ocean floor, where
endoliths are known to inhabit on Earth. Alternatively, it could exist clinging to the lower surface of Europa's ice layer, much like algae and bacteria in Earth's polar regions, or float freely in Europa's ocean.[188] Should Europa's oceans be too cold, biological processes similar to those known on Earth could not occur; too salty, only extreme
halophiles could survive in that environment.[188] In 2010, a model proposed by Richard Greenberg of the University of Arizona proposed that irradiation of ice on Europa's surface could saturate its crust with oxygen and peroxide, which could then be transported by tectonic processes into the interior ocean. Such a process could render Europa's ocean as oxygenated as our own within just 12 million years, allowing the existence of complex, multicellular lifeforms.[189]
Evidence suggests the existence of lakes of liquid water entirely encased in Europa's icy outer shell and distinct from a liquid ocean thought to exist farther down beneath the ice shell,[190][76] as well as pockets of water that form M-shaped ice ridges when the water freezes on the surface – as in Greenland.[191] If confirmed, the lakes and pockets of water could be yet another potential habitat for life. Evidence suggests that hydrogen peroxide is abundant across much of the surface of Europa.[192] Because hydrogen peroxide decays into oxygen and water when combined with liquid water, the authors argue that it could be an important energy supply for simple life forms. Nonetheless, on 4 March 2024, astronomers reported that the surface of Europa may have much less
oxygen than previously inferred.[27][28]
Clay-like minerals (specifically,
phyllosilicates), often associated with
organic matter on Earth, have been detected on the icy crust of Europa.[193] The presence of the minerals may have been the result of a collision with an
asteroid or comet.[193] Some scientists have speculated that life on Earth could have been blasted into space by asteroid collisions and arrived on the moons of Jupiter in a process called
lithopanspermia.[194]
^McGrath (2009). "Atmosphere of Europa". In Pappalardo, Robert T.; McKinnon, William B.; Khurana, Krishan K. (eds.). Europa. University of Arizona Press.
ISBN978-0-8165-2844-8.
^Van Helden, Albert (August 1994).
"Naming the Satellites of Jupiter and Saturn"(PDF). The Newsletter of the Historical Astronomy Division of the American Astronomical Society (32).
Archived(PDF) from the original on 7 December 2022. Retrieved 10 March 2023.
^
abMarazzini, Claudio (2005). "I nomi dei satelliti di Giove: da Galileo a Simon Marius" [The names of Jupiter's satellites: from Galileo to Simon Marius]. Lettere Italiane (in Italian). 57 (3): 391–407.
JSTOR26267017.
^US National Research Council (2000) A Science Strategy for the Exploration of Europa
^"High Tide on Europa". Astrobiology Magazine. astrobio.net. 2007. Archived from the original on 29 September 2007. Retrieved 20 October 2007.{{
cite web}}: CS1 maint: unfit URL (
link)
^
abKattenhorn, Simon A.; Prockter, Louise M. (7 September 2014). "Evidence for subduction in the ice shell of Europa". Nature Geoscience. 7 (10): 762–767.
Bibcode:
2014NatGe...7..762K.
doi:
10.1038/ngeo2245.
^O'Brien, David P.; Geissler, Paul; Greenberg, Richard (October 2000). "Tidal Heat in Europa: Ice Thickness and the Plausibility of Melt-Through". Bulletin of the American Astronomical Society. 30: 1066.
Bibcode:
2000DPS....32.3802O.
^Greenberg, Richard (2008).
Unmasking Europa. Copernicus. Springer + Praxis Publishing. pp. 205–215, 236.
ISBN978-0-387-09676-6.
Archived from the original on 22 January 2010. Retrieved 28 August 2017.
^
abGreenberg, Richard (2005). Europa: The Ocean Moon: Search for an Alien Biosphere. Springer Praxis Books. Springer + Praxis. pp. 7 ff.
doi:
10.1007/b138547.
ISBN978-3-540-27053-9.
^Greeley, Ronald; et al. (2004) "Chapter 15: Geology of Europa", pp. 329 ff. in Bagenal, Fran; Dowling, Timothy E.; and McKinnon, William B., editors; Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press,
ISBN0-521-81808-7.
^Park, Ryan S.; Bills, Bruce; Buffington, Brent B. (July 2015). "Improved detection of tides at Europa with radiometric and optical tracking during flybys". Planetary and Space Science. 112: 10–14.
Bibcode:
2015P&SS..112...10P.
doi:
10.1016/j.pss.2015.04.005.
^Williams, Matt (15 September 2015).
"Jupiter's Moon Europa". Universe Today.
Archived from the original on 10 March 2016. Retrieved 9 March 2016.
^
abBillings, Sandra E.; Kattenhorn, Simon A. (2005). "The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges". Icarus. 177 (2): 397–412.
Bibcode:
2005Icar..177..397B.
doi:
10.1016/j.icarus.2005.03.013.
^Carlson, R. W.; Anderson, M. S.; Mehlman, R.; Johnson, R. E. (2005). "Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate". Icarus. 177 (2): 461.
Bibcode:
2005Icar..177..461C.
doi:
10.1016/j.icarus.2005.03.026.
^Calvin, Wendy M.; Clark, Roger N.; Brown, Robert H.; Spencer, John R. (1995). "Spectra of the ice Galilean satellites from 0.2 to 5 μm: A compilation, new observations, and a recent summary". Journal of Geophysical Research. 100 (E9): 19, 041–19, 048.
Bibcode:
1995JGR...10019041C.
doi:
10.1029/94JE03349.
^Whalen, Kelly; Lunine, Jonathan I.;
Blaney, Diana L. (2017). MISE: A Search for Organics on Europa. American Astronomical Society Meeting Abstracts #229. Vol. 229. p. 138.04.
Bibcode:
2017AAS...22913804W.
^Coll, Patrice; Szopa, Cyril; Buch, Arnaud; Carrasco, Nathalie; Ramirez, Sandra I.; Quirico, Eric; Sternberg, Robert; Cabane, Michel; Navarro-Gonzalez, Rafael; Raulin, Francois; Israel, G.; Poch, O.; Brasse, C. (2010). Prebiotic chemistry on Titan ? The nature of Titan's aerosols and their potential evolution at the satellite surface. 38th Cospar Scientific Assembly. Vol. 38. p. 11.
Bibcode:
2010cosp...38..777C.
^Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana (16 December 2010). "Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions". Origins of Life and Evolution of Biospheres. 41 (4): 331–345.
Bibcode:
2011OLEB...41..331R.
doi:
10.1007/s11084-010-9232-z.
PMID21161385.
S2CID19283373.
^"Europa: Energy". NASA. 2012. Archived from
the original on 28 April 2016. Retrieved 18 April 2016. Tidal flexing of the ice shell could create slightly warmer pockets of ice that rise slowly upward to the surface, carrying material from the ocean below.
^Fletcher, Leigh (12 December 2013).
"The Plumes of Europa". The Planetary Society.
Archived from the original on 15 December 2013. Retrieved 17 December 2013.
^Johnson, Robert E.; Lanzerotti, Louis J.; Brown, Walter L. (1982). "Planetary applications of ion induced erosion of condensed-gas frosts". Nuclear Instruments and Methods in Physics Research. 198 (1): 147.
Bibcode:
1982NIMPR.198..147J.
doi:
10.1016/0167-5087(82)90066-7.
^Smyth, W. H.; Marconi, M. L. (2007). Processes Shaping Galilean Satellite Atmospheres from the Surface to the Magnetosphere. Workshop on Ices. Vol. 1357. p. 131.
Bibcode:
2007LPICo1357..131S.
^Hall, D. T.; Strobel, D. F.; Feldman, P. D.; McGrath, M. A.; Weaver, H. A. (23 February 1995). "Detection of an oxygen atmosphere on Jupiter's moon Europa". Nature. 373 (6516): 677–679.
Bibcode:
1995Natur.373..677H.
doi:
10.1038/373677a0.
PMID7854447.
^Pappalardo, Robert; Cooke, Brian; Goldstein, Barry; Prockter, Louise; Senske, Dave; Magner, Tom (2013).
"The Europa Clipper – OPAG Update"(PDF).
JPL/
APL.
Archived(PDF) from the original on 25 January 2021. Retrieved 13 December 2013.
^Weiss, P.; Yung, K. L.; Kömle, N.; Ko, S. M.; Kaufmann, E.; Kargl, G. (2011). "Thermal drill sampling system onboard high-velocity impactors for exploring the subsurface of Europa". Advances in Space Research. 48 (4): 743.
Bibcode:
2011AdSpR..48..743W.
doi:
10.1016/j.asr.2010.01.015.
hdl:10397/12621.
^Powell, Jesse; Powell, James; Maise, George; Paniagua, John (2005). "NEMO: A mission to search for and return to Earth possible life forms on Europa". Acta Astronautica. 57 (2–8): 579–593.
Bibcode:
2005AcAau..57..579P.
doi:
10.1016/j.actaastro.2005.04.003.
^Richard Greenberg (May 2010). "Transport Rates of Radiolytic Substances into Europa's Ocean: Implications for the Potential Origin and Maintenance of Life". Astrobiology. 10 (3): 275–283.
Bibcode:
2010AsBio..10..275G.
doi:
10.1089/ast.2009.0386.
PMID20446868.