From Wikipedia, the free encyclopedia
A flock of starlings acting as a swarm

Active matter is matter composed of large numbers of active "agents", each of which consumes energy in order to move or to exert mechanical forces. [1] [2] Such systems are intrinsically out of thermal equilibrium. Unlike thermal systems relaxing towards equilibrium and systems with boundary conditions imposing steady currents, active matter systems break time reversal symmetry because energy is being continually dissipated by the individual constituents. [3] [4] Most examples of active matter are biological in origin and span all the scales of the living, from bacteria and self-organising bio-polymers such as microtubules and actin (both of which are part of the cytoskeleton of living cells), to schools of fish and flocks of birds. However, a great deal of current experimental work is devoted to synthetic systems such as artificial self-propelled particles. [5] [6] Active matter is a relatively new material classification in soft matter: the most extensively studied model, the Vicsek model, dates from 1995. [7]

Research in active matter combines analytical techniques, numerical simulations and experiments. Notable analytical approaches include hydrodynamics, [8] kinetic theory, and non-equilibrium statistical physics. Numerical studies mainly involve self-propelled-particles models, [9] [10] making use of agent-based models such as molecular dynamics algorithms or lattice-gas models, [11] as well as computational studies of hydrodynamic equations of active fluids. [8] Experiments on biological systems extend over a wide range of scales, including animal groups (e.g., bird flocks, [12] mammalian herds, fish schools and insect swarms [13]), bacterial colonies, cellular tissues (e.g. epithelial tissue layers, [14] cancer growth and embryogenesis), cytoskeleton components (e.g., in vitro motility assays, actin-myosin networks and molecular-motor driven filaments [15]). Experiments on synthetic systems include self-propelled colloids (e.g., phoretically propelled particles [16]), driven granular matter (e.g. vibrated monolayers [17]), swarming robots and Quinke rotators.

Concepts in Active matter

Active matter systems

References

  1. ^ Ramaswamy, Sriram (2010-01-01). "The Mechanics and Statistics of Active Matter". Annual Review of Condensed Matter Physics. 1 (1): 323–345. arXiv: 1004.1933. Bibcode: 2010ARCMP...1..323R. doi: 10.1146/annurev-conmatphys-070909-104101. S2CID  55500360.
  2. ^ Marchetti, M. C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Adita Simha, R. (2012). "Hydrodynamics of soft active matter". Reviews of Modern Physics. 85 (3): 1143–1189. arXiv: 1207.2929. Bibcode: 2013RvMP...85.1143M. doi: 10.1103/RevModPhys.85.1143.
  3. ^ Berthier, Ludovic; Kurchan, Jorge (7 June 2019). "Lectures on non-equilibrium active systems". arXiv: 1906.04039 [ cond-mat.stat-mech].
  4. ^ Cates, Michael E.; Tailleur, Julien (January 2, 2015). "Motility-Induced Phase Separation". Annual Review of Condensed Matter Physics. 6: 219–244. arXiv: 1406.3533. Bibcode: 2015ARCMP...6..219C. doi: 10.1146/annurev-conmatphys-031214-014710. S2CID  15672131.
  5. ^ Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis (6 November 2013). "Emergence of macroscopic directed motion in populations of motile colloids". Nature. 503 (7474): 95–98. arXiv: 1311.2017. Bibcode: 2013Natur.503...95B. doi: 10.1038/nature12673. PMID  24201282. S2CID  1174081.
  6. ^ Theurkauff, I.; Cottin-Bizonne, C.; Palacci, J.; Ybert, C.; Bocquet, L. (26 June 2012). "Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling". Physical Review Letters. 108 (26): 268303. arXiv: 1202.6264. Bibcode: 2012PhRvL.108z8303T. doi: 10.1103/PhysRevLett.108.268303. PMID  23005020. S2CID  4890068.
  7. ^ Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. (1995). "Novel type of phase transition in a system of self-driven particles". Physical Review Letters. 75 (6): 1226–1229. arXiv: cond-mat/0611743. Bibcode: 1995PhRvL..75.1226V. doi: 10.1103/PhysRevLett.75.1226. PMID  10060237. S2CID  15918052.
  8. ^ a b Toner, John; Tu, Yuhai; Ramaswamy, Sriram (2005-07-01). "Hydrodynamics and phases of flocks" (PDF). Annals of Physics. Special Issue. 318 (1): 170–244. Bibcode: 2005AnPhy.318..170T. doi: 10.1016/j.aop.2005.04.011.
  9. ^ Vicsek, Tamás; Czirók, András; Ben-Jacob, Eshel; Cohen, Inon; Shochet, Ofer (1995-08-07). "Novel Type of Phase Transition in a System of Self-Driven Particles". Physical Review Letters. 75 (6): 1226–1229. arXiv: cond-mat/0611743. Bibcode: 1995PhRvL..75.1226V. doi: 10.1103/PhysRevLett.75.1226. PMID  10060237. S2CID  15918052.
  10. ^ Chaté, Hugues; Ginelli, Francesco; Grégoire, Guillaume; Raynaud, Franck (2008-04-18). "Collective motion of self-propelled particles interacting without cohesion". Physical Review E. 77 (4): 046113. arXiv: 0712.2062. Bibcode: 2008PhRvE..77d6113C. doi: 10.1103/PhysRevE.77.046113. PMID  18517696. S2CID  30774878.
  11. ^ Bussemaker, Harmen J.; Deutsch, Andreas; Geigant, Edith (1997-06-30). "Mean-Field Analysis of a Dynamical Phase Transition in a Cellular Automaton Model for Collective Motion". Physical Review Letters. 78 (26): 5018–5021. arXiv: physics/9706008. Bibcode: 1997PhRvL..78.5018B. doi: 10.1103/physrevlett.78.5018. ISSN  0031-9007. S2CID  45979152.
  12. ^ Ballerini, M.; Cabibbo, N.; Candelier, R.; Cavagna, A.; Cisbani, E.; Giardina, I.; Lecomte, V.; Orlandi, A.; Parisi, G. (2008-01-29). "Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study". Proceedings of the National Academy of Sciences. 105 (4): 1232–1237. arXiv: 0709.1916. Bibcode: 2008PNAS..105.1232B. doi: 10.1073/pnas.0711437105. ISSN  0027-8424. PMC  2234121. PMID  18227508.
  13. ^ Buhl, J.; Sumpter, D. J. T.; Couzin, I. D.; Hale, J. J.; Despland, E.; Miller, E. R.; Simpson, S. J. (2006-06-02). "From Disorder to Order in Marching Locusts". Science. 312 (5778): 1402–1406. Bibcode: 2006Sci...312.1402B. doi: 10.1126/science.1125142. ISSN  0036-8075. PMID  16741126. S2CID  359329.
  14. ^ Trepat, Xavier; Wasserman, Michael R.; Angelini, Thomas E.; Millet, Emil; Weitz, David A.; Butler, James P.; Fredberg, Jeffrey J. (2009-06-01). "Physical forces during collective cell migration". Nature Physics. 5 (6): 426–430. Bibcode: 2009NatPh...5..426T. doi: 10.1038/nphys1269. ISSN  1745-2473.
  15. ^ Keber, Felix C.; Loiseau, Etienne; Sanchez, Tim; DeCamp, Stephen J.; Giomi, Luca; Bowick, Mark J.; Marchetti, M. Cristina; Dogic, Zvonimir; Bausch, Andreas R. (2014-09-05). "Topology and dynamics of active nematic vesicles". Science. 345 (6201): 1135–1139. arXiv: 1409.1836. Bibcode: 2014Sci...345.1135K. doi: 10.1126/science.1254784. ISSN  0036-8075. PMC  4401068. PMID  25190790.
  16. ^ Palacci, Jeremie; Sacanna, Stefano; Steinberg, Asher Preska; Pine, David J.; Chaikin, Paul M. (2013-02-22). "Living Crystals of Light-Activated Colloidal Surfers". Science. 339 (6122): 936–940. Bibcode: 2013Sci...339..936P. doi: 10.1126/science.1230020. ISSN  0036-8075. PMID  23371555. S2CID  1974474.
  17. ^ Deseigne, Julien; Dauchot, Olivier; Chaté, Hugues (2010-08-23). "Collective Motion of Vibrated Polar Disks". Physical Review Letters. 105 (9): 098001. arXiv: 1004.1499. Bibcode: 2010PhRvL.105i8001D. doi: 10.1103/PhysRevLett.105.098001. PMID  20868196. S2CID  40192049.