From Wikipedia, the free encyclopedia
LATE neuropathologic changes (LATE-NC). A normal centenarian brain, cut in the coronal plane (top left) is compared to a brain with LATE-NC (top right). The hippocampi on both sides are atrophic (shrunken) in the brain with LATE-NC. The bottom 3 panels show photomicrographs of a hippocampus with LATE-NC, stained for phosphorylated TDP-43 protein (TDP-43). Insets show TDP-43 positive neuronal cytoplasmic inclusions (Inset A--in dentate granule cells) and wispy non-tapering cellular processes stained for TDP-43 protein (Inset B--in CA1).

LATE is a term that describes a prevalent condition with impaired memory and thinking in advanced age, often culminating in the dementia clinical syndrome. [1] In other words, the symptoms of LATE are similar to those of Alzheimer's disease.  

The acronym LATE stands for Limbic-predominant Age-related TDP-43 Encephalopathy: “ limbic” is related to the brain areas first involved, “age-related” and the name “LATE” itself refer to the onset of disease usually in persons aged 80 or older,  “ TDP-43” indicates the aberrant mis-folded protein (or proteinopathy) deposits in the brain that characterize LATE, and “ encephalopathy” means illness of brain.

At present LATE can only be diagnosed with certainty at autopsy. The terminology used to refer to the brain changes identified in autopsy-confirmed LATE is: LATE neuropathologic change (LATE-NC). The diagnosis of LATE-NC at autopsy requires detection of pathologic TDP-43 protein deposits in the brain, especially in the amygdala and hippocampus.

LATE is a very common condition: autopsy studies around the world indicate that LATE is present in the brains of about one-third of people over 85. [1] [2] LATE typically affects persons older than 75 years of age (with some exceptions; please see below) and becomes increasingly prevalent every year in advanced old age. [1] This is in contrast to Alzheimer's disease pathology, which tends to level off and perhaps decrease in prevalence among persons beyond age 85 years. [1] LATE is often comorbid with (i.e., occurs in the same brain as) other pathologic changes that are associated with dementia, such as Alzheimer's disease and cerebrovascular disease(s). [3] [4]

LATE has a large impact on public health. Clinical-pathologic correlation studies have established that the presence of LATE-NC is associated with impairments in memory and thinking. [1] In older persons whose brains lack Alzheimer's disease-type amyloid plaques and neurofibrillary tangles, the presence of LATE-NC at autopsy is associated with a relatively slow cognitive decline (in comparison with Alzheimer's disease), mostly affecting the memory domain. [5] However, most people (~75%) beyond age 85 have some Alzheimer's disease-type pathology and in this common scenario the impact of LATE-NC is very important. [6] Approximately one-half of persons with Alzheimer's disease pathology also have LATE-NC. [7] [8] [9] In these persons, the presence of LATE-NC is associated with a swifter disease course and with more severe clinical (memory and thinking) impairment than when only Alzheimer's disease pathology is present. [10] [11] [12] [5] A common combination of brain pathologies—with Alzheimer's disease pathology, Lewy body pathology, and LATE-NC in the same brain—tends to affect younger individuals (often <75 yrs of age) and, on average, is associated with more aggressive (faster) cognitive deterioration. [4] [13] [10] With or without co-existing Alzheimer's disease pathology or other brain changes, persons with LATE-NC generally lack the clinical features of frontotemporal dementia (FTD). [14] [15]

For reasons that are presently unknown, the disease process of LATE-NC preferentially affects medial temporal lobe structures of the brain, particularly the amygdala and hippocampus. [16] In a significant proportion of persons with LATE-NC, there is atrophy, cell loss and astrogliosis in the hippocampus, diagnosable at autopsy (and somewhat less specifically via MRI during life) as hippocampal sclerosis. [17] Brains with LATE-NC and hippocampal sclerosis are relatively more affected clinically than those with LATE-NC alone. [18] The phenomenon of hippocampal sclerosis-linked dementia, as well as the link to TDP-43, were first described by Dr. Dennis Dickson and colleagues, [19] [17] and this clinical-pathologic entity was subsequently confirmed by many others. [20] [21] [22] [23] [24] However, brain changes diagnosable as "hippocampal sclerosis" is/are also seen in other diseases (such as epilepsy), and many LATE-NC brains lack full-blown hippocampal sclerosis, so, hippocampal sclerosis is neither a sensitive nor specific feature of LATE-NC. [1]

The major known risk factors for LATE-NC are genetic: variations in the TMEM106B, GRN, APOE, ABCC9, KCNMB2, and WWOX genes have been linked to altered risk for LATE-NC (and/or hippocampal sclerosis dementia). [1] [25] [26] [27] [28] [29] [30] [31]

There currently is no known cure or preventative strategy for LATE-NC.

The deleterious impact(s) of TDP-43 proteinopathy may influence the brain via a number of different mechanisms. In normal brains and other tissues, the TDP-43 protein helps to ensure proper functioning of genes in the cell; the misfolded TDP-43 may thus impair normal gene expression regulation (so in LATE-NC, there is a loss-of-normal-function), and, the aberrant TDP-43 protein in LATE-NC may induce toxic gains of function also. [32] [33]

TDP-43 proteinopathy (a disease-associated phenomenon discovered by Dr. Manuela Neumann and colleagues at UPENN in the Drs John Trojanowski/Virginia Lee CNDR Lab [34]) is also implicated in frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and other diseases. [35] [36] [34]

References

  1. ^ a b c d e f g Nelson, Peter T; Dickson, Dennis W; Trojanowski, John T; Boyle, Patricia A; Arfanakis, Konstantinos; Rademakers, Rosa; Alafuzoff, Irina; Attems, Johannes; Brayne, Carol; Coyle-Gilchrist, Ian T S; Chui, Helena C; Fardo, David W; Flanagan, Margaret E; Halliday, Glenda; Hokkanen, Suvi R K; Hunter, Sally; Jicha, Gregory A; Katsumata, Yuriko; Kawas, Claudia H; Keene, C Dirk; Kovacs, Gabor G; Kukull, Walter A; Levey, Allan I; Makkinejad, Nazanin; Montine, Thomas J; Murayama, Shigeo; Murray, Melissa E; Nag, Sukriti; Rissman, Robert A; Seeley, William W; Sperling, Reisa A; White III, Charles L; Yu, Lei; Schneider, Julie A (30 April 2019). "Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report". Brain. Online first (6): 1503–1527. doi: 10.1093/brain/awz099. PMC  6536849. PMID  31039256.
  2. ^ Nelson, Peter T.; Brayne, Carol; Flanagan, Margaret E.; Abner, Erin L.; Agrawal, Sonal; Attems, Johannes; Castellani, Rudolph J.; Corrada, Maria M.; Cykowski, Matthew D.; Di, Jing; Dickson, Dennis W. (July 2022). "Frequency of LATE neuropathologic change across the spectrum of Alzheimer's disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts". Acta Neuropathologica. 144 (1): 27–44. doi: 10.1007/s00401-022-02444-1. ISSN  1432-0533. PMC  9552938. PMID  35697880. S2CID  249628141.
  3. ^ Harrison, William T.; Lusk, Jay B.; Liu, Beiyu; Ervin, John F.; Johnson, Kim G.; Green, Cynthia L.; Wang, Shih-Hsiu J. (November 2021). "Limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) is independently associated with dementia and strongly associated with arteriolosclerosis in the oldest-old". Acta Neuropathologica. 142 (5): 917–919. doi: 10.1007/s00401-021-02360-w. ISSN  1432-0533. PMC  8816525. PMID  34415381.
  4. ^ a b Wang, Shih-Hsiu J.; Guo, Yuanyuan; Ervin, John F.; Lusk, Jay B.; Luo, Sheng (2022-05-12). "Neuropathological associations of limbic-predominant age-related TDP-43 encephalopathy neuropathological change (LATE-NC) differ between the oldest-old and younger-old". Acta Neuropathologica. 144 (1): 45–57. doi: 10.1007/s00401-022-02432-5. ISSN  1432-0533. PMC  9997084. PMID  35551470. S2CID  248701133.
  5. ^ a b Nag, Sukriti; Yu, Lei; Wilson, Robert S.; Chen, Er-Yun; Bennett, David A.; Schneider, Julie A. (2017-02-14). "TDP-43 pathology and memory impairment in elders without pathologic diagnoses of AD or FTLD". Neurology. 88 (7): 653–660. doi: 10.1212/WNL.0000000000003610. ISSN  1526-632X. PMC  5317379. PMID  28087828.
  6. ^ Braak, Heiko; Thal, Dietmar R.; Ghebremedhin, Estifanos; Del Tredici, Kelly (November 2011). "Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years". Journal of Neuropathology and Experimental Neurology. 70 (11): 960–969. doi: 10.1097/NEN.0b013e318232a379. ISSN  1554-6578. PMID  22002422. S2CID  739734.
  7. ^ Buciuc, Marina; Wennberg, Alexandra M.; Weigand, Stephen D.; Murray, Melissa E.; Senjem, Matthew L.; Spychalla, Anthony J.; Boeve, Bradley F.; Knopman, David S.; Jack, Clifford R.; Kantarci, Kejal; Parisi, Joseph E. (2020). "Effect Modifiers of TDP-43-Associated Hippocampal Atrophy Rates in Patients with Alzheimer's Disease Neuropathological Changes". Journal of Alzheimer's Disease. 73 (4): 1511–1523. doi: 10.3233/JAD-191040. ISSN  1875-8908. PMC  7081101. PMID  31929165.
  8. ^ Nag, Sukriti; Barnes, Lisa L.; Yu, Lei; Wilson, Robert S.; Bennett, David A.; Schneider, Julie A. (2020-10-13). "Limbic-predominant age-related TDP-43 encephalopathy in Black and White decedents". Neurology. 95 (15): e2056–e2064. doi: 10.1212/WNL.0000000000010602. ISSN  1526-632X. PMC  7713750. PMID  32759188.
  9. ^ Hunter, Sally; Hokkanen, Suvi R. K.; Keage, Hannah A. D.; Fleming, Jane; Minett, Thais; Polvikoski, Tuomo; Allinson, Kieren; Brayne, Carol; Cambridge City over 75s Cohort collaboration (2020). "TDP-43 Related Neuropathologies and Phosphorylation State: Associations with Age and Clinical Dementia in the Cambridge City over-75s Cohort". Journal of Alzheimer's Disease. 75 (1): 337–350. doi: 10.3233/JAD-191093. ISSN  1875-8908. PMID  32280087. S2CID  215748586.{{ cite journal}}: CS1 maint: numeric names: authors list ( link)
  10. ^ a b Karanth, Shama; Nelson, Peter T.; Katsumata, Yuriko; Kryscio, Richard J.; Schmitt, Frederick A.; Fardo, David W.; Cykowski, Matthew D.; Jicha, Gregory A.; Van Eldik, Linda J.; Abner, Erin L. (2020-10-01). "Prevalence and Clinical Phenotype of Quadruple Misfolded Proteins in Older Adults". JAMA Neurology. 77 (10): 1299–1307. doi: 10.1001/jamaneurol.2020.1741. ISSN  2168-6157. PMC  7309572. PMID  32568358.
  11. ^ Josephs, Keith A.; Whitwell, Jennifer L.; Tosakulwong, Nirubol; Weigand, Stephen D.; Murray, Melissa E.; Liesinger, Amanda M.; Petrucelli, Leonard; Senjem, Matthew L.; Ivnik, Robert J.; Parisi, Joseph E.; Petersen, Ronald C. (November 2015). "TAR DNA-binding protein 43 and pathological subtype of Alzheimer's disease impact clinical features". Annals of Neurology. 78 (5): 697–709. doi: 10.1002/ana.24493. ISSN  1531-8249. PMC  4623932. PMID  26224156.
  12. ^ Josephs, Keith A.; Dickson, Dennis W.; Tosakulwong, Nirubol; Weigand, Stephen D.; Murray, Melissa E.; Petrucelli, Leonard; Liesinger, Amanda M.; Senjem, Matthew L.; Spychalla, Anthony J.; Knopman, David S.; Parisi, Joseph E. (November 2017). "Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer's disease: a longitudinal retrospective study". The Lancet. Neurology. 16 (11): 917–924. doi: 10.1016/S1474-4422(17)30284-3. ISSN  1474-4465. PMC  5646369. PMID  28919059.
  13. ^ Katsumata, Yuriko; Abner, Erin L.; Karanth, Shama; Teylan, Merilee A.; Mock, Charles N.; Cykowski, Matthew D.; Lee, Edward B.; Boehme, Kevin L.; Mukherjee, Shubhabrata; Kauwe, John S. K.; Kryscio, Richard J. (November 2020). "Distinct clinicopathologic clusters of persons with TDP-43 proteinopathy". Acta Neuropathologica. 140 (5): 659–674. doi: 10.1007/s00401-020-02211-0. ISSN  1432-0533. PMC  7572241. PMID  32797255.
  14. ^ Nelson, Peter T. (2021-08-11). "LATE Neuropathologic Changes with Little or No Alzheimer Disease is Common and is Associated with Cognitive Impairment but Not Frontotemporal Dementia". Journal of Neuropathology and Experimental Neurology. 80 (7): 649–651. doi: 10.1093/jnen/nlab050. ISSN  1554-6578. PMC  8357339. PMID  34270750.
  15. ^ Amador-Ortiz, Catalina; Ahmed, Zeshan; Zehr, Cynthia; Dickson, Dennis W. (March 2007). "Hippocampal sclerosis dementia differs from hippocampal sclerosis in frontal lobe degeneration". Acta Neuropathologica. 113 (3): 245–252. doi: 10.1007/s00401-006-0183-4. ISSN  0001-6322. PMC  1794627. PMID  17195931.
  16. ^ Josephs, Keith A.; Murray, Melissa E.; Whitwell, Jennifer L.; Tosakulwong, Nirubol; Weigand, Stephen D.; Petrucelli, Leonard; Liesinger, Amanda M.; Petersen, Ronald C.; Parisi, Joseph E.; Dickson, Dennis W. (April 2016). "Updated TDP-43 in Alzheimer's disease staging scheme". Acta Neuropathologica. 131 (4): 571–585. doi: 10.1007/s00401-016-1537-1. ISSN  1432-0533. PMC  5946692. PMID  26810071.
  17. ^ a b Amador-Ortiz, Catalina; Lin, Wen-Lang; Ahmed, Zeshan; Personett, David; Davies, Peter; Duara, Ranjan; Graff-Radford, Neill R.; Hutton, Michael L.; Dickson, Dennis W. (May 2007). "TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease". Annals of Neurology. 61 (5): 435–445. doi: 10.1002/ana.21154. ISSN  0364-5134. PMC  2677204. PMID  17469117.
  18. ^ Nelson, Peter T.; Abner, Erin L.; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Davis, Daron G.; Poduska, John W.; Patel, Ela; Mendiondo, Marta S.; Markesbery, William R. (January 2010). "Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons". Brain Pathology (Zurich, Switzerland). 20 (1): 66–79. doi: 10.1111/j.1750-3639.2008.00244.x. ISSN  1750-3639. PMC  2864342. PMID  19021630.
  19. ^ Dickson, D. W.; Davies, P.; Bevona, C.; Van Hoeven, K. H.; Factor, S. M.; Grober, E.; Aronson, M. K.; Crystal, H. A. (1994). "Hippocampal sclerosis: a common pathological feature of dementia in very old (> or = 80 years of age) humans". Acta Neuropathologica. 88 (3): 212–221. doi: 10.1007/BF00293396. ISSN  0001-6322. PMID  7810292. S2CID  6265307.
  20. ^ Hokkanen, Suvi R. K.; Hunter, Sally; Polvikoski, Tuomo M.; Keage, Hannah A. D.; Minett, Thais; Matthews, Fiona E.; Brayne, Carol; MRC CFAS and CC75C Study Group (July 2018). "Hippocampal sclerosis, hippocampal neuron loss patterns and TDP-43 in the aged population". Brain Pathology (Zurich, Switzerland). 28 (4): 548–559. doi: 10.1111/bpa.12556. ISSN  1750-3639. PMC  6099461. PMID  28833898.{{ cite journal}}: CS1 maint: numeric names: authors list ( link)
  21. ^ Spina, Salvatore; La Joie, Renaud; Petersen, Cathrine; Nolan, Amber L.; Cuevas, Deion; Cosme, Celica; Hepker, Mackenzie; Hwang, Ji-Hye; Miller, Zachary A.; Huang, Eric J.; Karydas, Anna M. (2021-08-17). "Comorbid neuropathological diagnoses in early versus late-onset Alzheimer's disease". Brain: A Journal of Neurology. 144 (7): 2186–2198. doi: 10.1093/brain/awab099. ISSN  1460-2156. PMC  8502474. PMID  33693619.
  22. ^ Zarow, Chris; Weiner, Michael W.; Ellis, William G.; Chui, Helena Chang (July 2012). "Prevalence, laterality, and comorbidity of hippocampal sclerosis in an autopsy sample". Brain and Behavior. 2 (4): 435–442. doi: 10.1002/brb3.66. ISSN  2162-3279. PMC  3432966. PMID  22950047.
  23. ^ Makkinejad, Nazanin; Schneider, Julie A.; Yu, Junxiao; Leurgans, Sue E.; Kotrotsou, Aikaterini; Evia, Arnold M.; Bennett, David A.; Arfanakis, Konstantinos (May 2019). "Associations of amygdala volume and shape with transactive response DNA-binding protein 43 (TDP-43) pathology in a community cohort of older adults". Neurobiology of Aging. 77: 104–111. doi: 10.1016/j.neurobiolaging.2019.01.022. ISSN  1558-1497. PMC  6486844. PMID  30784812.
  24. ^ Nelson, Peter T.; Schmitt, Frederick A.; Lin, Yushun; Abner, Erin L.; Jicha, Gregory A.; Patel, Ela; Thomason, Paula C.; Neltner, Janna H.; Smith, Charles D.; Santacruz, Karen S.; Sonnen, Joshua A. (May 2011). "Hippocampal sclerosis in advanced age: clinical and pathological features". Brain: A Journal of Neurology. 134 (Pt 5): 1506–1518. doi: 10.1093/brain/awr053. ISSN  1460-2156. PMC  3097889. PMID  21596774.
  25. ^ Dickson, Dennis W.; Baker, Matthew; Rademakers, Rosa (2010). "Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly". Neuro-Degenerative Diseases. 7 (1–3): 170–174. doi: 10.1159/000289231. ISSN  1660-2862. PMC  2859236. PMID  20197700.
  26. ^ Murray, Melissa E.; Cannon, Ashley; Graff-Radford, Neill R.; Liesinger, Amanda M.; Rutherford, Nicola J.; Ross, Owen A.; Duara, Ranjan; Carrasquillo, Minerva M.; Rademakers, Rosa; Dickson, Dennis W. (September 2014). "Differential clinicopathologic and genetic features of late-onset amnestic dementias". Acta Neuropathologica. 128 (3): 411–421. doi: 10.1007/s00401-014-1302-2. ISSN  1432-0533. PMC  4412022. PMID  24899141.
  27. ^ Nelson, Peter T.; Estus, Steven; Abner, Erin L.; Parikh, Ishita; Malik, Manasi; Neltner, Janna H.; Ighodaro, Eseosa; Wang, Wang-Xia; Wilfred, Bernard R.; Wang, Li-San; Kukull, Walter A. (2014). "ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology". Acta Neuropathologica. 127 (6): 825–843. doi: 10.1007/s00401-014-1282-2. ISSN  1432-0533. PMC  4113197. PMID  24770881.
  28. ^ Dugan, Adam J.; Nelson, Peter T.; Katsumata, Yuriko; Shade, Lincoln M. P.; Boehme, Kevin L.; Teylan, Merilee A.; Cykowski, Matthew D.; Mukherjee, Shubhabrata; Kauwe, John S. K.; Hohman, Timothy J.; Schneider, Julie A. (2021-09-15). "Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study". Acta Neuropathologica Communications. 9 (1): 152. doi: 10.1186/s40478-021-01250-2. ISSN  2051-5960. PMC  8442328. PMID  34526147.
  29. ^ Yang, Hyun-Sik; Yu, Lei; White, Charles C.; Chibnik, Lori B.; Chhatwal, Jasmeer P.; Sperling, Reisa A.; Bennett, David A.; Schneider, Julie A.; De Jager, Philip L. (September 2018). "Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study". The Lancet. Neurology. 17 (9): 773–781. doi: 10.1016/S1474-4422(18)30251-5. ISSN  1474-4465. PMC  6154505. PMID  30093249.
  30. ^ Beecham, Gary W.; Hamilton, Kara; Naj, Adam C.; Martin, Eden R.; Huentelman, Matt; Myers, Amanda J.; Corneveaux, Jason J.; Hardy, John; Vonsattel, Jean-Paul; Younkin, Steven G.; Bennett, David A. (September 2014). "Genome-wide association meta-analysis of neuropathologic features of Alzheimer's disease and related dementias". PLOS Genetics. 10 (9): e1004606. doi: 10.1371/journal.pgen.1004606. ISSN  1553-7404. PMC  4154667. PMID  25188341.
  31. ^ Dugan, Adam J.; Nelson, Peter T.; Katsumata, Yuriko; Shade, Lincoln M. P.; Teylan, Merilee A.; Boehme, Kevin L.; Mukherjee, Shubhabrata; Kauwe, John S. K.; Hohman, Timothy J.; Schneider, Julie A.; Alzheimer's Disease Genetics Consortium (2021-10-29). "Association between WWOX/MAF variants and dementia-related neuropathologic endophenotypes". Neurobiology of Aging. 111: 95–106. doi: 10.1016/j.neurobiolaging.2021.10.011. ISSN  0197-4580. PMC  8761217. PMID  34852950. S2CID  240120472.
  32. ^ Chen, Han-Jou; Mitchell, Jacqueline C. (2021-06-02). "Mechanisms of TDP-43 Proteinopathy Onset and Propagation". International Journal of Molecular Sciences. 22 (11): 6004. doi: 10.3390/ijms22116004. ISSN  1422-0067. PMC  8199531. PMID  34199367.
  33. ^ Gendron, Tania F.; Rademakers, Rosa; Petrucelli, Leonard (2013). "TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43". Journal of Alzheimer's Disease. 33 (Suppl 1): S35–45. doi: 10.3233/JAD-2012-129036. ISSN  1875-8908. PMC  3532959. PMID  22751173.
  34. ^ a b Neumann, Manuela; Sampathu, Deepak M.; Kwong, Linda K.; Truax, Adam C.; Micsenyi, Matthew C.; Chou, Thomas T.; Bruce, Jennifer; Schuck, Theresa; Grossman, Murray; Clark, Christopher M.; McCluskey, Leo F. (2006-10-06). "Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis". Science. 314 (5796): 130–133. Bibcode: 2006Sci...314..130N. doi: 10.1126/science.1134108. ISSN  1095-9203. PMID  17023659. S2CID  8620103.
  35. ^ "Newly recognized form of dementia could now be easier to diagnose". New Scientist. 30 April 2019. Retrieved 30 April 2019.
  36. ^ Chornenkyy, Yevgen; Fardo, David W.; Nelson, Peter T. (July 2019). "Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy". Laboratory Investigation. 99 (7): 993–1007. doi: 10.1038/s41374-019-0196-y. ISSN  1530-0307. PMC  6609463. PMID  30742063.

Further reading